14,247 research outputs found

    Solutions to Detect and Analyze Online Radicalization : A Survey

    Full text link
    Online Radicalization (also called Cyber-Terrorism or Extremism or Cyber-Racism or Cyber- Hate) is widespread and has become a major and growing concern to the society, governments and law enforcement agencies around the world. Research shows that various platforms on the Internet (low barrier to publish content, allows anonymity, provides exposure to millions of users and a potential of a very quick and widespread diffusion of message) such as YouTube (a popular video sharing website), Twitter (an online micro-blogging service), Facebook (a popular social networking website), online discussion forums and blogosphere are being misused for malicious intent. Such platforms are being used to form hate groups, racist communities, spread extremist agenda, incite anger or violence, promote radicalization, recruit members and create virtual organi- zations and communities. Automatic detection of online radicalization is a technically challenging problem because of the vast amount of the data, unstructured and noisy user-generated content, dynamically changing content and adversary behavior. There are several solutions proposed in the literature aiming to combat and counter cyber-hate and cyber-extremism. In this survey, we review solutions to detect and analyze online radicalization. We review 40 papers published at 12 venues from June 2003 to November 2011. We present a novel classification scheme to classify these papers. We analyze these techniques, perform trend analysis, discuss limitations of existing techniques and find out research gaps

    Bloggers Behavior and Emergent Communities in Blog Space

    Full text link
    Interactions between users in cyberspace may lead to phenomena different from those observed in common social networks. Here we analyse large data sets about users and Blogs which they write and comment, mapped onto a bipartite graph. In such enlarged Blog space we trace user activity over time, which results in robust temporal patterns of user--Blog behavior and the emergence of communities. With the spectral methods applied to the projection on weighted user network we detect clusters of users related to their common interests and habits. Our results suggest that different mechanisms may play the role in the case of very popular Blogs. Our analysis makes a suitable basis for theoretical modeling of the evolution of cyber communities and for practical study of the data, in particular for an efficient search of interesting Blog clusters and further retrieval of their contents by text analysis

    Community structure in directed networks

    Full text link
    We consider the problem of finding communities or modules in directed networks. The most common approach to this problem in the previous literature has been simply to ignore edge direction and apply methods developed for community discovery in undirected networks, but this approach discards potentially useful information contained in the edge directions. Here we show how the widely used benefit function known as modularity can be generalized in a principled fashion to incorporate the information contained in edge directions. This in turn allows us to find communities by maximizing the modularity over possible divisions of a network, which we do using an algorithm based on the eigenvectors of the corresponding modularity matrix. This method is shown to give demonstrably better results than previous methods on a variety of test networks, both real and computer-generated.Comment: 5 pages, 3 figure

    Modularity and community structure in networks

    Full text link
    Many networks of interest in the sciences, including a variety of social and biological networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure has attracted considerable recent attention. One of the most sensitive detection methods is optimization of the quality function known as "modularity" over the possible divisions of a network, but direct application of this method using, for instance, simulated annealing is computationally costly. Here we show that the modularity can be reformulated in terms of the eigenvectors of a new characteristic matrix for the network, which we call the modularity matrix, and that this reformulation leads to a spectral algorithm for community detection that returns results of better quality than competing methods in noticeably shorter running times. We demonstrate the algorithm with applications to several network data sets.Comment: 7 pages, 3 figure

    Detecting Communities in Networks by Merging Cliques

    Full text link
    Many algorithms have been proposed for detecting disjoint communities (relatively densely connected subgraphs) in networks. One popular technique is to optimize modularity, a measure of the quality of a partition in terms of the number of intracommunity and intercommunity edges. Greedy approximate algorithms for maximizing modularity can be very fast and effective. We propose a new algorithm that starts by detecting disjoint cliques and then merges these to optimize modularity. We show that this performs better than other similar algorithms in terms of both modularity and execution speed.Comment: 5 pages, 7 figure

    BlogForever D2.4: Weblog spider prototype and associated methodology

    Get PDF
    The purpose of this document is to present the evaluation of different solutions for capturing blogs, established methodology and to describe the developed blog spider prototype

    Impact of local information in growing networks

    Full text link
    We present a new model of the evolutionary dynamics and the growth of on-line social networks. The model emulates people's strategies for acquiring information in social networks, emphasising the local subjective view of an individual and what kind of information the individual can acquire when arriving in a new social context. The model proceeds through two phases: (a) a discovery phase, in which the individual becomes aware of the surrounding world and (b) an elaboration phase, in which the individual elaborates locally the information trough a cognitive-inspired algorithm. Model generated networks reproduce main features of both theoretical and real-world networks, such as high clustering coefficient, low characteristic path length, strong division in communities, and variability of degree distributions.Comment: In Proceedings Wivace 2013, arXiv:1309.712

    Evolution of Ego-networks in Social Media with Link Recommendations

    Full text link
    Ego-networks are fundamental structures in social graphs, yet the process of their evolution is still widely unexplored. In an online context, a key question is how link recommender systems may skew the growth of these networks, possibly restraining diversity. To shed light on this matter, we analyze the complete temporal evolution of 170M ego-networks extracted from Flickr and Tumblr, comparing links that are created spontaneously with those that have been algorithmically recommended. We find that the evolution of ego-networks is bursty, community-driven, and characterized by subsequent phases of explosive diameter increase, slight shrinking, and stabilization. Recommendations favor popular and well-connected nodes, limiting the diameter expansion. With a matching experiment aimed at detecting causal relationships from observational data, we find that the bias introduced by the recommendations fosters global diversity in the process of neighbor selection. Last, with two link prediction experiments, we show how insights from our analysis can be used to improve the effectiveness of social recommender systems.Comment: Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM 2017), Cambridge, UK. 10 pages, 16 figures, 1 tabl
    • …
    corecore