2,203 research outputs found

    Detecting 3D geometric boundaries of indoor scenes under varying lighting

    Full text link
    The goal of this research is to identify 3D geometric boundaries in a set of 2D photographs of a static indoor scene under unknown, changing lighting conditions. A 3D geometric boundary is a contour located at a 3D depth discontinuity or a discontinuity in the surface normal. These boundaries can be used effectively for reasoning about the 3D layout of a scene. To distinguish 3D geometric boundaries from 2D texture edges, we analyze the illumination subspace of local appearance at each image location. In indoor time-lapse photography and surveillance video, we frequently see images that are lit by unknown combinations of uncalibrated light sources. We in-troduce an algorithm for semi-binary non-negative matrix factorization (SBNMF) to decompose such images into a set of lighting basis images, each of which shows the scene lit by a single light source. These basis images provide a natural, succinct representation of the scene, enabling tasks such as scene editing (e.g., relighting) and shadow edge identificatio

    Synthesizing Training Data for Object Detection in Indoor Scenes

    Full text link
    Detection of objects in cluttered indoor environments is one of the key enabling functionalities for service robots. The best performing object detection approaches in computer vision exploit deep Convolutional Neural Networks (CNN) to simultaneously detect and categorize the objects of interest in cluttered scenes. Training of such models typically requires large amounts of annotated training data which is time consuming and costly to obtain. In this work we explore the ability of using synthetically generated composite images for training state-of-the-art object detectors, especially for object instance detection. We superimpose 2D images of textured object models into images of real environments at variety of locations and scales. Our experiments evaluate different superimposition strategies ranging from purely image-based blending all the way to depth and semantics informed positioning of the object models into real scenes. We demonstrate the effectiveness of these object detector training strategies on two publicly available datasets, the GMU-Kitchens and the Washington RGB-D Scenes v2. As one observation, augmenting some hand-labeled training data with synthetic examples carefully composed onto scenes yields object detectors with comparable performance to using much more hand-labeled data. Broadly, this work charts new opportunities for training detectors for new objects by exploiting existing object model repositories in either a purely automatic fashion or with only a very small number of human-annotated examples.Comment: Added more experiments and link to project webpag

    Detecting shadows and low-lying objects in indoor and outdoor scenes using homographies

    Get PDF
    Many computer vision applications apply background suppression techniques for the detection and segmentation of moving objects in a scene. While these algorithms tend to work well in controlled conditions they often fail when applied to unconstrained real-world environments. This paper describes a system that detects and removes erroneously segmented foreground regions that are close to a ground plane. These regions include shadows, changing background objects and other low-lying objects such as leaves and rubbish. The system uses a set-up of two or more cameras and requires no 3D reconstruction or depth analysis of the regions. Therefore, a strong camera calibration of the set-up is not necessary. A geometric constraint called a homography is exploited to determine if foreground points are on or above the ground plane. The system takes advantage of the fact that regions in images off the homography plane will not correspond after a homography transformation. Experimental results using real world scenes from a pedestrian tracking application illustrate the effectiveness of the proposed approach

    Cumulative object categorization in clutter

    Get PDF
    In this paper we present an approach based on scene- or part-graphs for geometrically categorizing touching and occluded objects. We use additive RGBD feature descriptors and hashing of graph configuration parameters for describing the spatial arrangement of constituent parts. The presented experiments quantify that this method outperforms our earlier part-voting and sliding window classification. We evaluated our approach on cluttered scenes, and by using a 3D dataset containing over 15000 Kinect scans of over 100 objects which were grouped into general geometric categories. Additionally, color, geometric, and combined features were compared for categorization tasks

    Blocks2World: Controlling Realistic Scenes with Editable Primitives

    Full text link
    We present Blocks2World, a novel method for 3D scene rendering and editing that leverages a two-step process: convex decomposition of images and conditioned synthesis. Our technique begins by extracting 3D parallelepipeds from various objects in a given scene using convex decomposition, thus obtaining a primitive representation of the scene. These primitives are then utilized to generate paired data through simple ray-traced depth maps. The next stage involves training a conditioned model that learns to generate images from the 2D-rendered convex primitives. This step establishes a direct mapping between the 3D model and its 2D representation, effectively learning the transition from a 3D model to an image. Once the model is fully trained, it offers remarkable control over the synthesis of novel and edited scenes. This is achieved by manipulating the primitives at test time, including translating or adding them, thereby enabling a highly customizable scene rendering process. Our method provides a fresh perspective on 3D scene rendering and editing, offering control and flexibility. It opens up new avenues for research and applications in the field, including authoring and data augmentation.Comment: 16 pages, 15 figure
    corecore