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Keywords: Homography, Shadow Removal, Low-LyingThe technique described in this paper makes use of a geometric
Regions, Stereo, 2D Analysis constraint called éhomographybetween multiple views of
the same scene taken from slightly different viewpoints. The
homography is used to map points on the ground plane in one
Abstract image to the corresponding ground plane points in another
image of the same scene. Other published works using
homographies include obstacle detection and avoidance [1,

Many computer vision applications apply background. 6] and road region extraction [12]. Although 3D depth
suppression techniques for the detection and segmentaiff@rmation could be computed to determine shadows and
of moving objects in a scene. While these algorithms te#v-lying regions across image pairs it is computationally
to work well in controlled conditions they often fail when€Xpensive. Computing depth using stereo is of the order of
applied to unconstrained real-world environments. This pagdf * n * d), wherem is the number of image pixels, is
describes a system that detects and removes erroneotf3ySize of the correlation window, antlis the number of
segmented foreground regions that are close to a ground pl&hgparities searched [2]. Stereo-based homography on the other
These regions include shadows, changing background objdt@8d is computationally cheap. While it does not provide depth
and other low-lying objects such as leaves and rubbish. TR&rmation, it does however provide enough information to
system uses a set-up of two or more cameras and require$lifigrmine whether a particular image point is on the ground
3D reconstruction or depth analysis of the regions. Therefopdane or above it. Therefore, the algorithm described in this
a strong camera calibration of the set-up is not necessdt§Per has two purposes: (i) it identifies and removes shadows
A geometric constraint called a homography is exploited &d low-lying objects from segmented foreground regions and
determine if foreground points are on or above the groufi) it can be used in a preprocessing phase to remove such
plane. The system takes advantage of the fact that region®iects before depth analysis and thereby improving the speed
images off the homography plane will not correspond aftera@d reliability of the 3D reconstruction.

homography transformation. Experimental results using real

world scenes from a pedestrian tracking application illustraléis paper is organized as follows: Section 2 presents the

the effectiveness of the proposed approach. details of the developed algorithmic approach. Firstly, the
homographic transformation and a robust estimation technique

are described; we then illustrate how the background modelling
is implemented and how both low-lying and rising low-lying
regions are detected. In Section 3 we present experimental
results from both a controlled indoor environment and a real
gfgrld outdoor situation. Finally, Section 4 details conclusions
aé[ld future work.

1 Introduction

Numerous computer vision applications depend on accur
detection and segmentation of moving objects from
background model as a first step in their algorithmic process.

Many of the approaches implemented to achieve this are

based on background suppression techniques that wérkAlgorithm Details

well in controlled conditions. However, when these are

applied to unconstrained real-world environments containing

dynamic background conditions they often fail. Shadows, homography, H, also referred to as aprojective
ghosts (introduced when objects that initially belonged tdransformation or collineation is an invertible mapping
the background model move) and other small objects suchvaghin 2D projective spacdP?, such that three homogeneous
leaves or rubbish entering an outdoor scene can be incorregityntsx, x2 andxs lie on the same line if and only i (x ),
identified as valid foreground objects. While techniquel (x2) and H(x3) are collinear [10]. A3 x 3 homography
exist to detect and remove shadows and ghosts by meansnatrix can be used to describe both the relationships between
exploiting colour and motion information [7, 8, 9], this papereal world planes and a camera’s image plane and between two
describes a method to remove not only ground plane shadgesspective views of a planar object.

and ghosts but also other low-lying objects on a plane using a

purely 2D geometrical approach. Assuming a pointX, on a planar surface, is projected to the
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Figure 1: (a) Homograph#, . between a world plane and the
planes image; (b) Homograpty,; induced by a plane.

pointx in the image pland;, a homography{;,. exists from

7 to I, as shown in Figure 1(a). Taking a second camera aggod distribution of corresponding points across the whole real
image, />, of the same plane a sgpond distinct homogra[ﬁl_s‘n,y_ world plane. This is necessary as one important source of errors
exists fromr to /5. The composition of the two homographiesis the uneven distribution of input points [6]. Work has been
Hy andH,y, results in a third homography [16], which existgarried out on automatic extraction of feature points for planar
from I, to Iz: homography estimation, see [15, 11, 4, 12] for more details.
The normalised DLT algorithm [10] is used to compute a linear

! ~ —1
X' = Hon i x (1) solution to the homography. The DLT algorithm generates a
x' 2 Hyx (2) 2 x 9 matrix A; for each point correspondengg — x., where
where2 denotes equality up to a scale factor. T R 3)
el 0T —zlat

This homography fronT; to I, illustrated in Figure 1(b), is , )
known as alane inducechomography agf,, depends on the If there aren point correspondences then thd,; matrices are

position of the real world plane. The effect off; is to match composed _into a sing!@n x 9 matrix A. A Iinear_ solution
an image pointc = (z,y,1)” on I; with its corresponding to Ah = 0 is found using the least-squares solution [10] to a
pointx’ = (z',y',1)T on I, iff both x andx’ are images of the homogeneous system of linear equations, whesea 9-vector

same pointX on the planer. In other words, Equation (2) is Made up of the entries of the matdk
true if x andx’ are images of the same poikt that is on the

planer, otherwise Equation (2) fails. The farther the pakat

is off the homography plane the greater the disparity betweéd.1 Robust Homography Estimation
Hy1x andx’s actual corresponding point if3.

Due to incorrect matches in corresponding feature points,
called outliers and also due to noise, errors arise in
the homography estimation process. For a given point
correspondence; — x, an error valuey;, can be calculated

The 3x3 homography matrixd, has 9 entries, but it has only gas the perpendicular distance between the real corresponding
degrees of freedom as it is a homogeneous matrix and therefdPEt 10X, Tamelyxgh and t?e correslpondmg pom-t induced
defined only up to scale. Each 2D homogeneous image pdi¥t/l: N@melyIx;. The total error valuey, for a givenH

x; = (zi,:, 1) has two degrees of freedom corresponding &g then be calculated as the sum of the errorsihatduces
thleay alr;dz‘ components. A point correspondencg — x/, on the point correspondences — x;. If there are more than

between the two projective planes gives two constraints HH” poin_t corresponde_nces, this error valu_e can be im_proved
H, since for each poink; on one projective plane the twoby applying the normalised DLT algorithm iteratively. Figure

degrees of freedom of the second point must correspond to .ghows the ite_rative_ normalised DL_T algorithm process flow
mapped poinHx; = (z, 4., 1)” . Therefore at least four point iagram. The iterative process weights each set ofnthe

correspondences are needed to constfaifully. The point matrices that cprre;pond to the point correspoqdenqes FO
correspondences are found by detecting a calibration Shapgqﬁrqve the estlmano_n accuracy. The value of this weighting,
an image and matching the found image points to real wofld is inversely proportional to the error:

points on the calibration shape. The calibration shape is placed 1

at multiple positions on the ground plane in order to ensure a ad; = Ai- 5; (4)

2.1 Homography Estimation



Figure 3: (a) Reference imagé,; (b) Other image,ls; (c)
Transformed/, overlaid ontol; .

(b)

Figure 4: (a) Zoomed section of reference imadg, (b)
Zoomed section of other imagéd;; (c) Zoomed section of
Eﬁnsformed& overlaid ontol; .

As such if the point correspondence represented pgives a
large error, i.e. the point is an outlier, thely is scaled down.
This means that the error induced by the homography for h
point correspondence will also be very small, and therefore will

be ignored to a large extent by the minimization algorithmssociated with it, this data is as follows:
Alternatively if the point correspondence is found to fit well

then A; is scaled up. Finally once a linear solution kb is

found, it is then enhanced using Powell minimization [13] to 1. A Gaussian for the pixel RGB value;
get a non-linear solution, this is necessary as linear methods

generally suffer from more errors when compared to non-lineaf™ A Gaussian for the gradient magnitudé;s, which .is
methods [6]. the absolute gradient value of the RGB channel with the

strongest gradient;

_ 3. A Gaussian for the gradient directigyf?".
2.2 Background Modelling

Using this technique the foreground edges are obtained in each
Before extracting foreground regions, each of the referenekthe » images. See Figures 7(a)-(d) and 9(a)-(d) for the
images is transformed vi#l into the same image plane forresults of the background subtraction technique in two different
comparison. Lef; represent the image plane andiet.n be scenarios. The use of a background suppression technique can
then — 1 other images of the same scene taken from differdeid to a number of problems. The background may change
viewpoints. To transform each imagé;, to the reference due to two factors [7]:
image I;, Equation (2) is used, wherH is the homography
from imageI; to imagel;, see Figure 3 for an illustrative
result. This is implemented to take advantage of the fact that-
two corresponding points on the ground plane would transform
to the same point in the reference view, whereas points above
or _below the ground plane would not trarjsform con_sistently_.z_ Objects that modify their status from stopped to moving
This can be seen from the zoomed section of the images in 4 yice versa.
Figure 4 note the increasing disparity between the edge of the
building, which is perpendicular to the ground plane, the farther
the height above the ground plane. Background suppression has an inherent trade-off between

high responsiveness to changes and reliable background
After transforming the images an edge-based backgroumédel computation which can lead to erroneous foreground
subtraction technique [3] is employed to extract foregroumdgion segmentation. An example of this is shadows cast
edge pixels. The technique assumes a static backgrodmydboth foreground and background objects being detected
and camera and incorporates the background subtractienforeground objects. This is especially true in a dynamic
technique directly into the edge detection process, to produeal world environment where the occluded sun can suddenly
a modified version of the standard Canny edge detector fBherge from behind clouds casting strong shadows. In
which computes only those edges which differ from the stataldition background suppression can pick ghosts as
background. An edge-based approach is used as it provifteeground regions. Ghosts are introduced when objects
the required input features that would be needed to generiagdonging to the background model move. When this occurs
a full 3D model which will be necessary in future worktwo new foreground regions are detected; the region where
Each background and foreground edge pixel has a set of déia object has moved to, and also the region where the object

Variations in the lighting conditions, for example, clouds
covering the sun in outdoor scenes or lights turned on or
off in indoor scenes.



was previously located in the background model. The secatié ground plane. By applying this algorithm with a relatively
region is referred to as a ghost, since it does not correspdod thresholdfor ¢,..4 reliable low-lying region seed pixels are
to any real moving object [7]. An example of a ghost can bebtained. Information on how to determitg. is provided in
found at the back right hand corner of Figure 9(d) and of @ection 3 and Figures 7(e) and 9(e) illustrate results for two
shadow in Figure 7(d), these are typical problems that ocdalifferent camera setups.
with background suppression algorithms.

The generation of reliable seed edge pixels is integral to this
Work has been done on suppressing shadows and ghostselohinique, however, at this stage there are cases when spurious
means of exploiting colour information [7, 8, 9]. Howeverow-lying seed pixels are detected. The removal of these seed
our approach aims to use a purely geometrical approachpigels is a two stage process, firstly the knowledge that ground
detecting objects on or close to the ground plane. Grouptane regions should have clusters of seed pixels is applied.
plane objects, such as rubbish, cast shadows, and ghosts That number of seed and non-seed foreground pixels in the
are on the ground plane can therefore be eliminated as they wdighbourhood of each seeg; are computed. I&,; does
closely abide by the homography constraint set out in Equatinat have above a certain percentagg,.., of seed to non-
(2). By using the homography information, the backgrourgked foreground pixels then; is reclassified as a non-seed
subtraction technique can be supplemented in order to devebaxel. However, the removal of seed pixels from one image
a more robust background subtraction algorithm. implies that corresponding seed pixels in other images may no

longer be valid. The second stage therefore is to check that

eache,; has a matching edge pixel in each other image, within
2.3 Low-Lying Region Detection the allowed neighbourhood, if it does not thepis reclassified

as a non-seed pixel. Information on how to deterntine. is

. provided in Section 3.
Let I; be the reference image and |&t..n be n — 1 other

images of the same scene taken from different viewpoir]iﬁwa"y’ each seed pixel is grown as follows. Each pixisl the
that have been warped into the reference framé,of Let  small local neighbourhood of each seed pixglis checked to
the segmented foreground edge pixeldirbe ei1, e12-.€1n,  see if it can be reclassified as a seed pixe}; itf a foreground
similarly let the foreground edge pixels ify range from piye| but not a seed or grown pixel then an attempt is made to
€21, €22..€om.  ¢From the background edge subtractioflhg a match to pixek,; in any other reference image within
technique described in Section 2.2, each foreground edge pig! |ocal neighbourhood te,;. Equation (5) is used with an
er; has data associated with it. This data is used in conjunctigRreased threshold,,..,, to determine if two edge pixels are
with the homography information to localise low-lying regiong match. A match is allowed to occur any other image
from all detected foreground regions. instead ofeveryother image, as in the case with obtaining

] ) seed pixels. The reason for this is that matches to all low-
If a pointe,; actuallydoeslie on the real world ground plane, |ying edge pixels will not be available in every image, due to
then the edge data for the pixel at locatiom eachl>..n  occlusion induced by the different viewpoints of the cameras.
will closely match the edge data for the corresponding pixghe growing of seed pixels is done iteratively as initial seed
in I;. Alternatively, if a pointe,; lies above the real world pixels may be sparsely spread throughout the image. The
ground plane, then the corresponding edge data in 8ach  nhymper of iterationg;,.,, is dependent o4, since seed
should not be matched by the edge datafioat the location pixels become sparser as this threshold is lowered. By applying
i, and this discrepancy can be detected. However due th@ algorithm with relativelynigh thresholdsor ¢,,.,, reliable
number of reasons such as noise, image quantisation, une¥GRlying edge pixels are obtained. Information on how to
ground plane, lighting and incorrect homography estimatiofatermine botht,,.., @nd ty., is provided in Section 3 and

this will not always be the case. A maichdg; is therefore Figyres 7(f) and 9(f) illustrate results of low-lying pixels for
allowed to occur in a small local neighbourhoodea, the o gifferent camera setups.

size of this neighbourhood depends on both the position of the

camera above the plane and also the distance above this plane

that pixels should still be detected as low-lying, see Figure 10 o _ _ _
for an illustration of this. To determine if an edge pixg} is 24 Rising Low-Lying Region Detection
acceptable as a matchdg;:

(g — gim)2 < tseed (5) The low-lying edge pixels detected will consist of objects that
should be ignored such as shadows on the ground plane, objects
where g% is the edge gradient direction at;, gg?j’” is the near to the ground plane such as leaves, paper, etc. However
edge gradient direction at,; andt,..q is a threshold value there will also be low-lying edge pixels that are part of objects
for the gradient directions of seed pixels. If a matchetp that rise above the ground plane, these include pedestrians feet,
is found inall other reference images, thep; is labelled as parts of prams or bicycles, etc. These aoéregions to ignore

a low-lying seed pixel otherwise it is labelled as a pixel offand so must be reclassified as foreground regions.



A modified version of the iterative connective componenBy applying this technique, spurious low-lying regions will be
4-neighbourhood algorithm [14] is applied to group theliminated, real low-lying regions will have missing sections
foreground edge pixels into regions. The algorithm is alterditled in and rising low-lying regions will be reclassified as
so that a new regionR, is grown according to gradientrelevant foreground regions. See Figures 7(f)-(g) and 9(f)-(g),
direction and pixel colour. A foreground edge pixgl;, isnot note how the problems of the shadow in Figure 7(d) and ghost
part of the region of one of its neighbouts, if either of the at the back right hand corner in Figure 9(d) are eliminated. This

following equations are true: method has also the added advantage that it becomes possible
to tell if part of an object is close to the ground plane but the
(gdir — gdir)2 < ¢, (6) object rises above it, or if the object is never near the ground
T sJ i .
plane, such as a persons head and shoulders when their feet
(971" = 943"9)? < tmag (7) are not visible. This information will be valuable in our future
work.

where g% and ¢/*? are the edge gradient direction and
magnitude ae,.; respectively, similarl)gg;iT andg_;*? are the
edge gradient direction and magnitude:=gt respectively and

both ¢y, andt,,,, are threshold values. The threshotds.

andt,,.q are not critical, in our experimentg;, andt,,,, are _ ) _ _ ) )
setto 15 and 50 respectively. These equations force pixels whthe crux of this work is to obtain good low-lying region pixels.
abrupt changes in direction or gradient to become new regioh§is means finding as many correctly identified pixels while
it will however allow for gradual changes in both gradierminimizing the number of false positives for a given setup.

direction, which will allow for curved regions, and gradient Ne technique defined in this paper is therefore dependent on
magnitude. four major thresholds values, namely..q andt,.,. which

are needed to obtain good seed pixels, apd,, and ;e

Once connected regions are formed the following statistics #pich are used to constrain the growth of the seed pixels. In
each region,R, are obtained: the percentage of low-lying t@rder to obtain the threshold values the system is put through
non low-lying region pixelsk,....; the centre of gravity of the gtrainjng stage. This training involves L!sing manually maslfed
low-lying edge pixels,.,; and the centre of gravity of all the input images, such as the one shown in Figure 5, to obtain a
other foreground edge pixels,,.. We use these statistics tog_round truth to allow the selection of the best thresholds for a
determine if a region is low-lying, rising or non low-lying. Thed!ven setup.

thresholdst;.., andtngn, used in the following rules, both ] ] ) )

represent percentages of low-lying to non low-lying regiofi©r @ given threshold configuratioti;, the low-lying edge
pixels in a region. These thresholds are not highly critical, RiXels are found in a single image via the defined algorithm.
our experiments;,, is set to 25 andt,;, is set to 756. For These pixels are then compared to the masked image and the

eachR that has at least one low-lying region edge pixel tHaumber of correctly identified low-lying pixels;;, and the
following is applied: number of false positivesfp;, are determined for each;.

Varioustc; are tested in a coarse to fine manner in order to
obtain an optimal threshold configuration. A graph such as

1. If Rpere < tiow; R is classified as a false positive low-Figure 6(a) is the result of this process, it shows the values
lying region and every foreground edge pixel iis of ¢; and fp; for a number of configurations for a given image.
reclassified as non low-lying region pixels. The graph has been sorted usifig values. Analysis of this

graph indicates that the value fat.4 is the dominating factor

2. If Rpere > thign; R is classified as a true positive low-for bothc; and fp; and it can be said that generalthe graph’s
lying region and every foreground edge pixel Ris x-axis is mirrored by the value of..4, which ranges from 0.25
reclassified as low-lying region pixels. to 2.5 as the x-axis diverges from the origin. To determine how

tc; compares to the other threshold configurations tested,

3. If Rpere > tiow aNdRpere < thign; then the relationship must be benchmarked against themsuitability value sv;, is
between the orientation @f,., t0 (... is examined. This associated wittc; which takes into account both how well the
information is used to indicate if the region is a lowconfiguration finds accurate low-lying pixels and also how well
lying region that is rising above the ground. If the grounfi controls the generation of false positives in a certain image.
plane occurs at the bottom of the image and object rises
above the ground to the top of the image then: the 100 xnxe 100 Xn X fp;

SU; = n - n (8)
value of ¢,,, should be above the value (,.,; the Do Ca Yowey [P
absolute difference between thgalues 0f,,.,, and(p;gx X %
should be significantly larger than the absolute difference
between the values 0f(,,.,, and(yqn. If this is true then The first part of Equation (8)4, represents the percentage of
every foreground edge pixel iR is reclassified as rising correct low-lying pixels found byc; to the average number
low-lying region pixels. found for all configurations for that image; paR of the

3 Experimental Results
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1000 Ci
we are interested in the solution that returns the most numi 01/"* i
of accurate low-lying pixels with the least humber of fals tey,tes, ..., te,
positives. If a threshold setup is required for higher precisic 75
rather than recall then the equation can be modified simply 50
weighting A at a higher value relative t&. The besttc; is 25
found by maximizing the value fasv;. The graph in Figure 0
6(b) showssv; for the configurations sorted in the same orde & -2°
as Figure 6(a). Figure 6(c) illustrateg fp; andsv; in the £ °
same coordinate system. It can be seen that the graph for E‘ 1;2
mirrors closely that of; whenfp; is low, but as the number for © 125
fp; becomes greatesy; rapidly declines. The region where g) 150
sv; peaks defines the boundaries of the area of interest of - 175
coarse iteration process. A fine iteration can then be appli -200
between these boundaries to determine the optimal thresh ~ -225 SU;
setup. This process is repeated for a number of images, -250 te1 teg. i te
implement it for 10 images of varying conditions, and thg e
with the higheskv; averaged over the number of frames is th }gggg
configuration used in a given setup. 7500 )
5000 -
We define two different setups; setup one consists of thr-o 2508 | A T
cameras placed approximately 4 metres above the ground pl E
monitoring real world conditions, and the second setup consi
of three cameras at a height of 1.5 metres above the grot 5
plane monitoring indoor scenarios. The cameras are in<
45° — 45° — 90° triangular configuration with a baseline of 5
approximately 10cm between each camera and a camera f= Ci
length of 3.8mm. The image resolutions @) x 480 and Ipi
320 x 240 respectively. For setup one it was found the 8Yi

a threshold configuration of.cca = 1, tpere = 33, tgrow = tey,teg, o ten

10 andt;.,. = 75 works best and for setup two a threshold

configuration oftsecq = 2, tpere = 25, tgrow = 5 andt;ze, = 10 Figure 6: Graphs for a number of different threshold
was used. Both setups used a neighbourhood of 1 vertical &agifigurations (a) Graph af; (in blue) andfp; (in red) (b)
1 horizontal pixel and this can be increased to obtain pixels tafaph ofsv; (c) Graph ofe; (in blue), fp; (in red) and scaled
lie at a greater height from the ground plane. The differencetf sv; (in yellow).

the thresholds found for these two setups points to the fact that

setup two was in a controlled environment with little clutter,

background activity and consistent lighting conditions. This

meant that the threshold on seeds and growth could be relaxed

and therefore less iterations on growth were necessary. See

Figures 7, 8 and 9 for detection results from both setups.
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