
DETECTING SHADOWS AND LOW-LYING OBJECTS IN
INDOOR AND OUTDOOR SCENES USING HOMOGRAPHIES

Philip Kelly
∗
, Paul Beardsley

±
, Eddie Cooke

∗
, Noel O’Connor

∗
, Alan Smeaton

∗

* Centre for Digital Video Processing, Adaptive Information Cluster, Dublin City University, Ireland
{kellyp, ej.cooke, oconnorn}@eeng.dcu.ie asmeaton@computing.dcu.ie

± Mitsubishi Electric Research Laboratories, 201 Broadway, Cambridge MA 02139, pab@merl.com

Keywords: Homography, Shadow Removal, Low-Lying
Regions, Stereo, 2D Analysis

Abstract

Many computer vision applications apply background
suppression techniques for the detection and segmentation
of moving objects in a scene. While these algorithms tend
to work well in controlled conditions they often fail when
applied to unconstrained real-world environments. This paper
describes a system that detects and removes erroneously
segmented foreground regions that are close to a ground plane.
These regions include shadows, changing background objects
and other low-lying objects such as leaves and rubbish. The
system uses a set-up of two or more cameras and requires no
3D reconstruction or depth analysis of the regions. Therefore,
a strong camera calibration of the set-up is not necessary.
A geometric constraint called a homography is exploited to
determine if foreground points are on or above the ground
plane. The system takes advantage of the fact that regions in
images off the homography plane will not correspond after a
homography transformation. Experimental results using real
world scenes from a pedestrian tracking application illustrate
the effectiveness of the proposed approach.

1 Introduction

Numerous computer vision applications depend on accurate
detection and segmentation of moving objects from a
background model as a first step in their algorithmic process.
Many of the approaches implemented to achieve this are
based on background suppression techniques that work
well in controlled conditions. However, when these are
applied to unconstrained real-world environments containing
dynamic background conditions they often fail. Shadows,
ghosts (introduced when objects that initially belonged to
the background model move) and other small objects such as
leaves or rubbish entering an outdoor scene can be incorrectly
identified as valid foreground objects. While techniques
exist to detect and remove shadows and ghosts by means of
exploiting colour and motion information [7, 8, 9], this paper
describes a method to remove not only ground plane shadows
and ghosts but also other low-lying objects on a plane using a
purely 2D geometrical approach.

The technique described in this paper makes use of a geometric
constraint called ahomographybetween multiple views of
the same scene taken from slightly different viewpoints. The
homography is used to map points on the ground plane in one
image to the corresponding ground plane points in another
image of the same scene. Other published works using
homographies include obstacle detection and avoidance [1,
2, 6] and road region extraction [12]. Although 3D depth
information could be computed to determine shadows and
low-lying regions across image pairs it is computationally
expensive. Computing depth using stereo is of the order of
O(m ∗ n ∗ d), wherem is the number of image pixels,n is
the size of the correlation window, andd is the number of
disparities searched [2]. Stereo-based homography on the other
hand is computationally cheap. While it does not provide depth
information, it does however provide enough information to
determine whether a particular image point is on the ground
plane or above it. Therefore, the algorithm described in this
paper has two purposes: (i) it identifies and removes shadows
and low-lying objects from segmented foreground regions and
(ii) it can be used in a preprocessing phase to remove such
objects before depth analysis and thereby improving the speed
and reliability of the 3D reconstruction.

This paper is organized as follows: Section 2 presents the
details of the developed algorithmic approach. Firstly, the
homographic transformation and a robust estimation technique
are described; we then illustrate how the background modelling
is implemented and how both low-lying and rising low-lying
regions are detected. In Section 3 we present experimental
results from both a controlled indoor environment and a real
world outdoor situation. Finally, Section 4 details conclusions
and future work.

2 Algorithm Details

A homography, H, also referred to as aprojective
transformation or collineation, is an invertible mapping
within 2D projective space,IP2 , such that three homogeneous
pointsx1, x2 andx3 lie on the same line if and only ifH(x1),
H(x2) andH(x3) are collinear [10]. A3 × 3 homography
matrix can be used to describe both the relationships between
real world planes and a camera’s image plane and between two
perspective views of a planar object.

Assuming a point,X, on a planar surface,π, is projected to the



(a) (b)

Figure 1: (a) HomographyH1π between a world plane and the
planes image; (b) HomographyH21 induced by a plane.

point x in the image planeI1, a homographyH1π exists from
π to I1 as shown in Figure 1(a). Taking a second camera and
image,I2, of the same plane a second distinct homographyH2π

exists fromπ to I2. The composition of the two homographies,
H1π andH2π, results in a third homography [16], which exists
from I1 to I2:

x′ ∼= H2πH−1
1π x (1)

x′ ∼= H21x (2)

where∼= denotes equality up to a scale factor.

This homography fromI1 to I2, illustrated in Figure 1(b), is
known as aplane inducedhomography asH21 depends on the
position of the real world planeπ. The effect ofH21 is to match
an image pointx = (x, y, 1)T on I1 with its corresponding
pointx′ = (x′, y′, 1)T onI2 iff both x andx′ are images of the
same pointX on the planeπ. In other words, Equation (2) is
true if x andx′ are images of the same pointX that is on the
planeπ, otherwise Equation (2) fails. The farther the pointX
is off the homography plane the greater the disparity between
H21x andx’s actual corresponding point inI2.

2.1 Homography Estimation

The 3×3 homography matrix,H, has 9 entries, but it has only 8
degrees of freedom as it is a homogeneous matrix and therefore
defined only up to scale. Each 2D homogeneous image point
xi = (xi, yi, 1)T has two degrees of freedom corresponding to
the xi andyi components. A point correspondencexi → x′i
between the two projective planes gives two constraints on
H, since for each pointxi on one projective plane the two
degrees of freedom of the second point must correspond to the
mapped pointHxi

∼= (x′i, y
′
i, 1)T . Therefore at least four point

correspondences are needed to constrainH fully. The point
correspondences are found by detecting a calibration shape in
an image and matching the found image points to real world
points on the calibration shape. The calibration shape is placed
at multiple positions on the ground plane in order to ensure a

Figure 2: Iterative DLT flow diagram.

good distribution of corresponding points across the whole real
world plane. This is necessary as one important source of errors
is the uneven distribution of input points [6]. Work has been
carried out on automatic extraction of feature points for planar
homography estimation, see [15, 11, 4, 12] for more details.
The normalised DLT algorithm [10] is used to compute a linear
solution to the homography. The DLT algorithm generates a
2×9 matrixAi for each point correspondencexi → x′i, where

Ai =
[

0T −xT
i y′ix

T
i

xT
i 0T −x′ix

T
i

]
(3)

If there aren point correspondences then thenAi matrices are
composed into a single2n × 9 matrix A. A linear solution
to Ah = 0 is found using the least-squares solution [10] to a
homogeneous system of linear equations, whereh is a 9-vector
made up of the entries of the matrixH.

2.1.1 Robust Homography Estimation

Due to incorrect matches in corresponding feature points,
called outliers, and also due to noise, errors arise in
the homography estimation process. For a given point
correspondencexi → x′i an error value,δi, can be calculated
as the perpendicular distance between the real corresponding
point to xi, namelyx′i, and the corresponding point induced
by H, namelyHxi. The total error value,δH , for a givenH
can then be calculated as the sum of the errors thatH induces
on the point correspondencesxi → x′i. If there are more than
four point correspondences, this error value can be improved
by applying the normalised DLT algorithm iteratively. Figure
2 shows the iterative normalised DLT algorithm process flow
diagram. The iterative process weights each set of thenAi

matrices that correspond to then point correspondences to
improve the estimation accuracy. The value of this weighting,
α, is inversely proportional to the error:

αAi = Ai ·
1
δi

(4)



(a) (b) (c)

Figure 3: (a) Reference image,I1; (b) Other image,I2; (c)
TransformedI2 overlaid ontoI1.

As such if the point correspondence represented byAi gives a
large error, i.e. the point is an outlier, thenAi is scaled down.
This means that the error induced by the homography for that
point correspondence will also be very small, and therefore will
be ignored to a large extent by the minimization algorithm.
Alternatively if the point correspondence is found to fit well
thenAi is scaled up. Finally once a linear solution toH is
found, it is then enhanced using Powell minimization [13] to
get a non-linear solution, this is necessary as linear methods
generally suffer from more errors when compared to non-linear
methods [6].

2.2 Background Modelling

Before extracting foreground regions, each of the reference
images is transformed viaH into the same image plane for
comparison. LetI1 represent the image plane and letI2...n be
then − 1 other images of the same scene taken from different
viewpoints. To transform each image,Ii, to the reference
imageI1, Equation (2) is used, whereH is the homography
from imageIi to imageI1, see Figure 3 for an illustrative
result. This is implemented to take advantage of the fact that
two corresponding points on the ground plane would transform
to the same point in the reference view, whereas points above
or below the ground plane would not transform consistently.
This can be seen from the zoomed section of the images in
Figure 4 note the increasing disparity between the edge of the
building, which is perpendicular to the ground plane, the farther
the height above the ground plane.

After transforming the images an edge-based background
subtraction technique [3] is employed to extract foreground
edge pixels. The technique assumes a static background
and camera and incorporates the background subtraction
technique directly into the edge detection process, to produce
a modified version of the standard Canny edge detector [5]
which computes only those edges which differ from the static
background. An edge-based approach is used as it provides
the required input features that would be needed to generate
a full 3D model which will be necessary in future work.
Each background and foreground edge pixel has a set of data

(a) (b) (c)

Figure 4: (a) Zoomed section of reference image,I1; (b)
Zoomed section of other image,I2; (c) Zoomed section of
transformedI2 overlaid ontoI1.

associated with it, this data is as follows:

1. A Gaussian for the pixel RGB value;

2. A Gaussian for the gradient magnitude,gmag, which is
the absolute gradient value of the RGB channel with the
strongest gradient;

3. A Gaussian for the gradient direction,gdir.

Using this technique the foreground edges are obtained in each
of the n images. See Figures 7(a)-(d) and 9(a)-(d) for the
results of the background subtraction technique in two different
scenarios. The use of a background suppression technique can
lead to a number of problems. The background may change
due to two factors [7]:

1. Variations in the lighting conditions, for example, clouds
covering the sun in outdoor scenes or lights turned on or
off in indoor scenes.

2. Objects that modify their status from stopped to moving
or vice versa.

Background suppression has an inherent trade-off between
high responsiveness to changes and reliable background
model computation which can lead to erroneous foreground
region segmentation. An example of this is shadows cast
by both foreground and background objects being detected
as foreground objects. This is especially true in a dynamic
real world environment where the occluded sun can suddenly
emerge from behind clouds casting strong shadows. In
addition background suppression can pick upghosts as
foreground regions. Ghosts are introduced when objects
belonging to the background model move. When this occurs
two new foreground regions are detected; the region where
the object has moved to, and also the region where the object



was previously located in the background model. The second
region is referred to as a ghost, since it does not correspond
to any real moving object [7]. An example of a ghost can be
found at the back right hand corner of Figure 9(d) and of a
shadow in Figure 7(d), these are typical problems that occur
with background suppression algorithms.

Work has been done on suppressing shadows and ghosts by
means of exploiting colour information [7, 8, 9]. However,
our approach aims to use a purely geometrical approach to
detecting objects on or close to the ground plane. Ground
plane objects, such as rubbish, cast shadows, and ghosts that
are on the ground plane can therefore be eliminated as they will
closely abide by the homography constraint set out in Equation
(2). By using the homography information, the background
subtraction technique can be supplemented in order to develop
a more robust background subtraction algorithm.

2.3 Low-Lying Region Detection

Let I1 be the reference image and letI2...n be n − 1 other
images of the same scene taken from different viewpoints
that have been warped into the reference frame ofI1. Let
the segmented foreground edge pixels inI1 be e11, e12...e1n,
similarly let the foreground edge pixels inI2 range from
e21, e22...e2m. ¿From the background edge subtraction
technique described in Section 2.2, each foreground edge pixel
eri has data associated with it. This data is used in conjunction
with the homography information to localise low-lying regions
from all detected foreground regions.

If a point eri actuallydoeslie on the real world ground plane,
then the edge data for the pixel at locationi in eachI2...n
will closely match the edge data for the corresponding pixel
in I1. Alternatively, if a pointeri lies above the real world
ground plane, then the corresponding edge data in eachI2...n
should not be matched by the edge data forI1 at the location
i, and this discrepancy can be detected. However due to a
number of reasons such as noise, image quantisation, uneven
ground plane, lighting and incorrect homography estimation,
this will not always be the case. A match toeri is therefore
allowed to occur in a small local neighbourhood toeri, the
size of this neighbourhood depends on both the position of the
camera above the plane and also the distance above this plane
that pixels should still be detected as low-lying, see Figure 10
for an illustration of this. To determine if an edge pixelesj is
acceptable as a match toeri:√

(gdir
ri − gdir

sj )2 < tseed (5)

wheregdir
ri is the edge gradient direction ateri, gdir

sj is the
edge gradient direction atesj and tseed is a threshold value
for the gradient directions of seed pixels. If a match toeri

is found inall other reference images, theneri is labelled as
a low-lying seed pixel, otherwise it is labelled as a pixel off

the ground plane. By applying this algorithm with a relatively
low thresholdfor tseed reliable low-lying region seed pixels are
obtained. Information on how to determinetseed is provided in
Section 3 and Figures 7(e) and 9(e) illustrate results for two
different camera setups.

The generation of reliable seed edge pixels is integral to this
technique, however, at this stage there are cases when spurious
low-lying seed pixels are detected. The removal of these seed
pixels is a two stage process, firstly the knowledge that ground
plane regions should have clusters of seed pixels is applied.
The number of seed and non-seed foreground pixels in the
neighbourhood of each seederi are computed. Iferi does
not have above a certain percentage,tperc, of seed to non-
seed foreground pixels theneri is reclassified as a non-seed
pixel. However, the removal of seed pixels from one image
implies that corresponding seed pixels in other images may no
longer be valid. The second stage therefore is to check that
eacheri has a matching edge pixel in each other image, within
the allowed neighbourhood, if it does not theneri is reclassified
as a non-seed pixel. Information on how to determinetperc is
provided in Section 3.

Finally, each seed pixel is grown as follows. Each pixelj in the
small local neighbourhood of each seed pixeleri is checked to
see if it can be reclassified as a seed pixel. Ifj is a foreground
pixel but not a seed or grown pixel then an attempt is made to
find a match to pixelecj in any other reference image within
the local neighbourhood toeri. Equation (5) is used with an
increased threshold,tgrow, to determine if two edge pixels are
a match. A match is allowed to occur inany other image
instead ofevery other image, as in the case with obtaining
seed pixels. The reason for this is that matches to all low-
lying edge pixels will not be available in every image, due to
occlusion induced by the different viewpoints of the cameras.
The growing of seed pixels is done iteratively as initial seed
pixels may be sparsely spread throughout the image. The
number of iterationstiter, is dependent ontseed, since seed
pixels become sparser as this threshold is lowered. By applying
this algorithm with relativelyhigh thresholdsfor tgrow reliable
low-lying edge pixels are obtained. Information on how to
determine bothtgrow and titer is provided in Section 3 and
Figures 7(f) and 9(f) illustrate results of low-lying pixels for
two different camera setups.

2.4 Rising Low-Lying Region Detection

The low-lying edge pixels detected will consist of objects that
should be ignored such as shadows on the ground plane, objects
near to the ground plane such as leaves, paper, etc. However
there will also be low-lying edge pixels that are part of objects
that rise above the ground plane, these include pedestrians feet,
parts of prams or bicycles, etc. These arenot regions to ignore
and so must be reclassified as foreground regions.



A modified version of the iterative connective components
4-neighbourhood algorithm [14] is applied to group the
foreground edge pixels into regions. The algorithm is altered
so that a new region,R, is grown according to gradient
direction and pixel colour. A foreground edge pixel,eri, is not
part of the region of one of its neighbours,esj , if either of the
following equations are true:√

(gdir
ri − gdir

sj )2 < tdir (6)√
(gmag

ri − gmag
sj )2 < tmag (7)

where gdir
ri and gmag

ri are the edge gradient direction and
magnitude ateri respectively, similarlygdir

sj andgmag
sj are the

edge gradient direction and magnitude atesj respectively and
both tdir and tmag are threshold values. The thresholdstdir

andtmag are not critical, in our experimentstdir andtmag are
set to 15 and 50 respectively. These equations force pixels with
abrupt changes in direction or gradient to become new regions,
it will however allow for gradual changes in both gradient
direction, which will allow for curved regions, and gradient
magnitude.

Once connected regions are formed the following statistics for
each region,R, are obtained: the percentage of low-lying to
non low-lying region pixelsRperc; the centre of gravity of the
low-lying edge pixelsζlow; and the centre of gravity of all the
other foreground edge pixelsζnon. We use these statistics to
determine if a region is low-lying, rising or non low-lying. The
thresholdstlow and thigh, used in the following rules, both
represent percentages of low-lying to non low-lying region
pixels in a region. These thresholds are not highly critical, in
our experimentstlow is set to 25% andthigh is set to 75%. For
eachR that has at least one low-lying region edge pixel the
following is applied:

1. If Rperc < tlow; R is classified as a false positive low-
lying region and every foreground edge pixel inR is
reclassified as non low-lying region pixels.

2. If Rperc > thigh; R is classified as a true positive low-
lying region and every foreground edge pixel inR is
reclassified as low-lying region pixels.

3. If Rperc > tlow andRperc < thigh; then the relationship
between the orientation ofζlow to ζnon is examined. This
information is used to indicate if the region is a low-
lying region that is rising above the ground. If the ground
plane occurs at the bottom of the image and object rises
above the ground to the top of the image then: they
value of ζnon should be above they value ζlow; the
absolute difference between they values ofζnon andζhigh

should be significantly larger than the absolute difference
between thex values ofζnon andζhigh. If this is true then
every foreground edge pixel inR is reclassified as rising
low-lying region pixels.

By applying this technique, spurious low-lying regions will be
eliminated, real low-lying regions will have missing sections
filled in and rising low-lying regions will be reclassified as
relevant foreground regions. See Figures 7(f)-(g) and 9(f)-(g),
note how the problems of the shadow in Figure 7(d) and ghost
at the back right hand corner in Figure 9(d) are eliminated. This
method has also the added advantage that it becomes possible
to tell if part of an object is close to the ground plane but the
object rises above it, or if the object is never near the ground
plane, such as a persons head and shoulders when their feet
are not visible. This information will be valuable in our future
work.

3 Experimental Results

The crux of this work is to obtain good low-lying region pixels.
This means finding as many correctly identified pixels while
minimizing the number of false positives for a given setup.
The technique defined in this paper is therefore dependent on
four major thresholds values, namely;tseed and tperc which
are needed to obtain good seed pixels, andtgrow and titer

which are used to constrain the growth of the seed pixels. In
order to obtain the threshold values the system is put through
a training stage. This training involves using manually masked
input images, such as the one shown in Figure 5, to obtain a
ground truth to allow the selection of the best thresholds for a
given setup.

For a given threshold configuration,tci, the low-lying edge
pixels are found in a single image via the defined algorithm.
These pixels are then compared to the masked image and the
number of correctly identified low-lying pixels,ci, and the
number of false positives,fpi, are determined for eachtci.
Various tci are tested in a coarse to fine manner in order to
obtain an optimal threshold configuration. A graph such as
Figure 6(a) is the result of this process, it shows the values
of ci andfpi for a number of configurations for a given image.
The graph has been sorted usingfpi values. Analysis of this
graph indicates that the value fortseed is the dominating factor
for bothci andfpi and it can be said thatin generalthe graph’s
x-axis is mirrored by the value oftseed, which ranges from 0.25
to 2.5 as the x-axis diverges from the origin. To determine how
tci compares to the other threshold configurations tested,tci

must be benchmarked against them. Asuitability value, svi, is
associated withtci which takes into account both how well the
configuration finds accurate low-lying pixels and also how well
it controls the generation of false positives in a certain image.

svi =
100× n× ci∑n

x=1 cx︸ ︷︷ ︸
A

− 100× n× fpi∑n
x=1 fpx︸ ︷︷ ︸

B

(8)

The first part of Equation (8),A, represents the percentage of
correct low-lying pixels found bytci to the average number
found for all configurations for that image; partB of the



(a) (b)

Figure 5: (a) Original foreground image; (b) Masked
foreground image (Red: low-lying regions; Blue: non low-
lying regions).

equation is similar to the first but calculates a percentage for
false positives. BothA andB are given an equal weighting as
we are interested in the solution that returns the most number
of accurate low-lying pixels with the least number of false
positives. If a threshold setup is required for higher precision
rather than recall then the equation can be modified simply by
weightingA at a higher value relative toB. The besttci is
found by maximizing the value forsvi. The graph in Figure
6(b) showssvi for the configurations sorted in the same order
as Figure 6(a). Figure 6(c) illustratesci, fpi and svi in the
same coordinate system. It can be seen that the graph forsvi

mirrors closely that ofci whenfpi is low, but as the number for
fpi becomes greater,svi rapidly declines. The region where
svi peaks defines the boundaries of the area of interest of the
coarse iteration process. A fine iteration can then be applied
between these boundaries to determine the optimal threshold
setup. This process is repeated for a number of images, we
implement it for 10 images of varying conditions, and thetci

with the highestsvi averaged over the number of frames is the
configuration used in a given setup.

We define two different setups; setup one consists of three
cameras placed approximately 4 metres above the ground plane
monitoring real world conditions, and the second setup consists
of three cameras at a height of 1.5 metres above the ground
plane monitoring indoor scenarios. The cameras are in a
45◦ − 45◦ − 90◦ triangular configuration with a baseline of
approximately 10cm between each camera and a camera focal
length of 3.8mm. The image resolutions are640 × 480 and
320 × 240 respectively. For setup one it was found that
a threshold configuration oftseed = 1, tperc = 33, tgrow =
10 andtiter = 75 works best and for setup two a threshold
configuration oftseed = 2, tperc = 25, tgrow = 5 andtiter = 10
was used. Both setups used a neighbourhood of 1 vertical and
1 horizontal pixel and this can be increased to obtain pixels that
lie at a greater height from the ground plane. The difference in
the thresholds found for these two setups points to the fact that
setup two was in a controlled environment with little clutter,
background activity and consistent lighting conditions. This
meant that the threshold on seeds and growth could be relaxed
and therefore less iterations on growth were necessary. See
Figures 7, 8 and 9 for detection results from both setups.

Figure 6: Graphs for a number of different threshold
configurations (a) Graph ofci (in blue) andfpi (in red) (b)
Graph ofsvi (c) Graph ofci (in blue),fpi (in red) and scaled
upsvi (in yellow).



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Results for setup one (a) Background image; (b)
Background model edges points; (c) Foreground image; (d)
Segmented foreground edge points; (e) Seed points (Blue
points); (f) Grown seed points (Blue points); (g) Rising low-
lying regions (Green points); (h) Only non low-lying regions.

(a) (b) (c)

(d) (e) (f)

Figure 8: Results for setup one; (a) and (d) Foreground image;
(b) and (e) Segmented foreground edge points; (c) and (f) Only
non low-lying regions.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9: Results for setup two (a) Background image; (b)
Background model edges points; (c) Foreground image; (d)
Segmented foreground edge points; (e) Seed points (Blue
points); (f) Grown seed points (Blue points); (g) Rising low-
lying regions (Green points); (h) Only non low-lying regions.

(a) (b) (c) (d)

Figure 10: Effects of a changing neighbourhood size (Results
shown are after growing Seed Edge Points), the neighbourhood
region consists of an offset of±1 Vertical pixel and (a)±0
Horizontal pixels; (b)±1 Horizontal pixel (we use this size
neighbourhood for the two setups); (c)±2 Horizontal pixels;
(d)±3 Horizontal pixels.



4 Conclusions and Future Work

Many computer vision applications require background
suppression techniques for the detection and segmentation
of moving objects in a scene. While these algorithms tend
to work well in controlled conditions they often fail when
applied to unconstrained real-world environments. This paper
described a system that successfully detects and removes
erroneously segmented foreground regions in both constrained
and unconstrained scenarios. The algorithm accurately detects
regions such as shadows, ghosts and other low-lying objects.
The approach avoids a costly computation of 3D depth values
and instead uses an easily computed 2D geometrical constraint
called a homography defined between multiple images of the
same planar scene. Experimental results are presented that
indicate the correctness of the approach for both an indoor
scenario and the outdoor environment of a pedestrian tracking
application.

The long term goal of this research is to develop a multiple
camera system that can robustly track pedestrians in 3D. In
that sense, the algorithm described may be regarded as a 2D
preprocessing step designed to remove erroneous foreground
information that would otherwise be tracked. Future work
entails computing a full multi-camera calibration allowing the
computation of fundamental matrices between camera pairs.
The derived epipolar geometry will enable the generation
of stereo correspondences within the images and hence 3D
tracking. The creation of virtual views would also be possible
and therefore allow users to view the scene from a chosen
pedestrian’s point of view.

Acknowledgements

This material is based on works supported by Science
Foundation Ireland under Grant No. 03/IN.3/I361.

References

[1] R. Alix, F. Le Coat, and D. Aubert. Flat
world homography for non-flat world on-road obstacle
detection. InProceedings of the IEEE Symposium on
Intelligent Vehicles, pages 310–315, 2003.

[2] P. H. Batavia and S. Singh. Obstacle detection
using adaptive color segmentation and color stereo
homography. InProceedings of the IEEE International
Conference on Robotics and Automation, pages 705–710,
2001.

[3] P. Beardsley and E. Bourrat. Wheelchair detection using
stereo vision. Technical report, MERL, August 2002.

[4] B. Boufama and D. O’Connell. Region segmentation and
matching in stereo images. InProceedings of the 16th
International Conference on Pattern Recognition, pages
631–634, 2002.

[5] J. Canny. A computational approach to edge detection.
In IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 679–698, 1986.

[6] Y. H. Chow and R. Chung. Obstacle avoidance of legged
robot without 3d reconstruction of the surroundings. In
Proceedings of the IEEE International Conference on
Robotics and Automation, pages 2316–2321, 2000.

[7] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati.
Detecting objects, shadows and ghosts in video streams
by exploiting color and motion information. In
11th International Conference on Image Analysis and
Processing, pages 360–365, 2001.

[8] R. Cucchiara, C. Grana, M. Piccardi, A. Pratii, and
S. Sirotti. Improving shadow suppression in moving
object detection with hsv color information. In
Proceedings of IEEE Intelligent Transportation System
Conference, pages 334–339, 2001.

[9] I. Haritaoglu, D. Harwoord, and L. S. Davis. W4: Real-
time surveillance of people and their activities. InIEEE
Trans. on Pattern Analysis and Machine Intelligence,
number 8, pages 809–830, 2000.

[10] R.I. Hartley and A. Zisserman.Multiple View Geometry
in Computer Vision Second Edition. Cambridge
University Press, 2003.

[11] K. Okuma, J. J. Little, and D. G. Lowe. Automatic
rectification of long image sequences. InAsian
Conference on Computer Vision, 2004.

[12] M. Okutomi and S. Noguchi. Extraction of road
region using stereo images. InProceedings of the 14th
International Conference on Pattern Recognition, pages
853–856, 1998.

[13] M. J. D. Powell. An efficient method for finding the
minimum of a function of several variables without
calculating derivatives.The Computer Journal, 1964.

[14] M. Sonka, V. Hlavac, and R. Boyle.Image Processing,
Analysis and Machine Vision, Second Edition. PWS
Publishing, 1999.

[15] E. Vincent and R. Laganiere. Detecting planar
homographies in an image pair. InProceedings of
the 2nd International Symposium on Image and Signal
Processing and Analysis, pages 182–187, 2001.

[16] Q.-B. Zhang, H.-X. Wang, and S. Wei. A new
algorithm for 3d projective reconstruction based on
infinite homography. InInternational Conference on
Machine Learning and Cybernetics, pages 2882–2886,
2003.


