20 research outputs found

    Numerical simulations of the full ink-jet printing processes: From jetting to evaporation

    Get PDF
    Ink-jet printing requires to perfectly control both the jetting of droplets and the subsequent droplet evaporation and absorption dynamics. Considerable complexity arises due to the fact that ink is constituted of a mixture of different liquids, surfactants and pigments. Using a sharp-interface ALE finite element method, we numerically investigate the main aspects of ink-jet printing, both on the jetting side and on the drying side. We show how a short pause in jetting can result in clogged nozzles due to solvent evaporation and discuss approaches how to prevent this undesired phenomenon. Once the droplets have been jetted on paper and is evaporating, the print quality can be deteriorated by the well-known coffee-stain effect, i.e. the preferential deposition of particles near the rim of the droplet. This can be prevented in several ways, e.g. employing controlled Marangoni flow via surfactants or co-solvents or printing on a primer layer jetted in beforehand, thus creating a homogeneous deposition pattern for a perfect final printout

    Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface

    Get PDF
    Evaporation of multi-component drops is crucial to various technologies and has numerous potential applications because of its ubiquity in nature. Superamphiphobic surfaces, which are both superhydrophobic and superoleophobic, can give a low wettability not only for water drops but also for oil drops. In this paper, we experimentally, numerically and theoretically investigate the evaporation process of millimetric sessile ouzo drops (a transparent mixture of water, ethanol, and trans-anethole) with low wettability on a superamphiphobic surface. The evaporation-triggered ouzo effect, i.e. the spontaneous emulsification of oil microdroplets below a specific ethanol concentration, preferentially occurs at the apex of the drop due to the evaporation flux distribution and volatility difference between water and ethanol. This observation is also reproduced by numerical simulations. The volume decrease of the ouzo drop is characterized by two distinct slopes. The initial steep slope is dominantly caused by the evaporation of ethanol, followed by the slower evaporation of water. At later stages, thanks to Marangoni forces the oil wraps around the drop and an oil shell forms. We propose an approximate diffusion model for the drying characteristics, which predicts the evaporation of the drops in agreement with experiment and numerical simulation results. This work provides an advanced understanding of the evaporation process of ouzo (multi-component) drops.Comment: 41 pages, 8 figure

    High-order asymptotic methods provide accurate, analytic solutions to intractable potential problems

    Get PDF
    The classical problem of determining the density and capacity of arrays of potential sources is studied. This corresponds to a wide variety of physical problems such as electrostatic capacitance, stress in elastostatics and the evaporation of fluid droplets. An asymptotic solution is derived that is shown to give excellent accuracy for arbitrary arrays of sources with non-circular footprints, including polygonal footprints. The solution is extensively validated against both experimental and numerical results. We illustrate the power of the solution by showcasing a variety of newly accessible classical problems that may be solved in a rapid, accurate manner

    Evaporating pure, binary and ternary droplets: thermal effects and axial symmetry breaking

    Get PDF
    The Greek aperitif Ouzo is not only famous for its specific anise-flavored taste, but also for its ability to turn from a transparent miscible liquid to a milky-white colored emulsion when water is added. Recently, it has been shown that this so-called Ouzo effect, i.e. the spontaneous emulsification of oil microdroplets, can also be triggered by the preferential evaporation of ethanol in an evaporating sessile Ouzo drop, leading to an amazingly rich drying process with multiple phase transitions [H. Tan et al., Proc. Natl. Acad. Sci. USA 113(31) (2016) 8642]. Due to the enhanced evaporation near the contact line, the nucleation of oil droplets starts at the rim which results in an oil ring encircling the drop. Furthermore, the oil droplets are advected through the Ouzo drop by a fast solutal Marangoni flow. In this article, we investigate the evaporation of mixture droplets in more detail, by successively increasing the mixture complexity from pure water over a binary water-ethanol mixture to the ternary Ouzo mixture (water, ethanol and anise oil). In particular, axisymmetric and full three-dimensional finite element method simulations have been performed on these droplets to discuss thermal effects and the complicated flow in the droplet driven by an interplay of preferential evaporation, evaporative cooling and solutal and thermal Marangoni flow. By using image analysis techniques and micro-PIV measurements, we are able to compare the numerically predicted volume evolutions and velocity fields with experimental data. The Ouzo droplet is furthermore investigated by confocal microscopy. It is shown that the oil ring predominantly emerges due to coalescence

    Precipitation dynamics of surrogate respiratory sessile droplets leading to possible fomites

    Get PDF
    HYPOTHESIS: The droplets ejected from an infected host during expiratory events can get deposited as fomites on everyday use surfaces. Recognizing that these fomites can be a secondary route for disease transmission, exploring the deposition pattern of such sessile respiratory droplets on daily-use substrates thus becomes crucial. EXPERIMENTS: The used surrogate respiratory fluid is composed of a water-based salt-protein solution, and its precipitation dynamics is studied on four different substrates (glass, ceramic, steel, and PET). For tracking the final deposition of viruses in these droplets, 100 nm virus emulating particles (VEP) are used and their distribution in dried-out patterns is identified using fluorescence and SEM imaging techniques. FINDINGS: The final precipitation pattern and VEP deposition strongly depend on the interfacial transport processes, edge evaporation, and crystallization dynamics. A constant contact radius mode of evaporation with a mixture of capillary and Marangoni flows results in spatio-temporally varying edge deposits. Dendritic and cruciform-shaped crystals are majorly seen in all substrates except on steel, where regular cubical crystals are formed. The VEP deposition is higher near the three-phase contact line and crystal surfaces. The results showed the role of interfacial processes in determining the initiation of fomite-type infection pathways in the context of COVID-19

    On the rising and sinking motion of bouncing oil drops in strongly stratified liquids

    Get PDF
    When an immiscible oil drop is immersed in a stably stratified ethanol-water mixture, the Marangoni flow on the surface of the drop can experience an oscillatory instability, so that the drop undergoes a transition from levitating to bouncing. The onset of the instability and its mechanisms have been studied previously, yet the bouncing motion of the drop itself, which is a completely different problem, has not yet been investigated. Here we study how the bouncing characteristics (jumping height, rising and sinking time) depend on the control parameters (drop radius, stratification strength, drop viscosity). We first record experimentally the bouncing trajectories of drops of different viscosities in different stratifications. Then a simplified dynamical analysis is performed to get the scaling relations of the jumping height and the rising and sinking times. The rising and sinking time scales are found to depend on the drag coefficient of the drop CDSC_D^S in the stratified liquid, which is determined empirically for the current parameter space. For low viscosity (5 cSt) oil drops the results on the drag coefficient match the ones from the literature. For high viscosity (100 cSt) oil drops the parameter space had not been explored and the drag coefficients are not readily available. Numerical simulations are therefore performed to provide external verification for the drag coefficients, which well match with the experimental results.Comment: 21 pages, 11 figure

    High-order asymptotic methods provide accurate, analytic solutions to intractable potential problems

    Get PDF
    The classical problem of determining the density and capacity of arrays of potential sources is studied. This corresponds to a wide variety of physical problems such as electrostatic capacitance, stress in elastostatics and the evaporation of fluid droplets. An asymptotic solution is derived that is shown to give excellent accuracy for arbitrary arrays of sources with non-circular footprints, including polygonal footprints. The solution is extensively validated against both experimental and numerical results. We illustrate the power of the solution by showcasing a variety of newly accessible classical problems that may be solved in a rapid, accurate manner

    Gas-Phase Temperature Mapping of Evaporating Microdroplets

    Get PDF
    Evaporation is a ubiquitous and complex phenomenon of importance to many natural and industrial systems. Evaporation occurs when molecules near the free interface overcome intermolecular attractions with the bulk liquid. As molecules escape the liquid phase, heat is removed, causing evaporative cooling. The influence of evaporative cooling on inducing a temperature difference with the surrounding atmosphere as well as within the liquid is poorly understood. Here, we develop a technique to overcome past difficulties encountered during the study of heterogeneous droplet evaporation by coupling a piezo-driven droplet generation mechanism to a controlled micro-thermocouple to probe microdroplet evaporation. The technique allowed us to probe the gas-phase temperature distribution using a micro-thermocouple (50 mu m) in the vicinity of the liquid-vapor interface with high spatial (+/- 10 mu m) and temporal (+/- 100 ms) resolution. We experimentally map the temperature gradient formed surrounding sessile water droplets having varying curvature dictated by the apparent advancing contact angle (100 degrees less than or similar to theta less than or similar to 165 degrees). The experiments were carried out at temperatures below and above ambient for a range of fixed droplet radii (130 mu m less than or similar to R less than or similar to 330 mu m). Our results provide a primary validation of the centuries-old theoretical framework underpinning heterogeneous droplet evaporation mediated by the working fluid, substrate, and gas thermophysical properties, droplet apparent contact angle, and droplet size. We show that microscale droplets residing on low-thermal-conductivity substrates such as glass absorb up to 8x more heat from the surrounding gas compared to droplets residing on high-thermal-conductivity substrates such as copper. Our work not only develops an experimental understanding of the heat transfer mechanisms governing droplet evaporation but also presents a powerful platform for the study and characterization of liquid-vapor transport at curved interfaces wetting and nonwetting advanced functional surfaces
    corecore