7,823 research outputs found

    MSPlayer: Multi-Source and multi-Path LeverAged YoutubER

    Full text link
    Online video streaming through mobile devices has become extremely popular nowadays. YouTube, for example, reported that the percentage of its traffic streaming to mobile devices has soared from 6% to more than 40% over the past two years. Moreover, people are constantly seeking to stream high quality video for better experience while often suffering from limited bandwidth. Thanks to the rapid deployment of content delivery networks (CDNs), popular videos are now replicated at different sites, and users can stream videos from close-by locations with low latencies. As mobile devices nowadays are equipped with multiple wireless interfaces (e.g., WiFi and 3G/4G), aggregating bandwidth for high definition video streaming has become possible. We propose a client-based video streaming solution, MSPlayer, that takes advantage of multiple video sources as well as multiple network paths through different interfaces. MSPlayer reduces start-up latency and provides high quality video streaming and robust data transport in mobile scenarios. We experimentally demonstrate our solution on a testbed and through the YouTube video service.Comment: accepted to ACM CoNEXT'1

    Characterizing and Improving the Reliability of Broadband Internet Access

    Full text link
    In this paper, we empirically demonstrate the growing importance of reliability by measuring its effect on user behavior. We present an approach for broadband reliability characterization using data collected by many emerging national initiatives to study broadband and apply it to the data gathered by the Federal Communications Commission's Measuring Broadband America project. Motivated by our findings, we present the design, implementation, and evaluation of a practical approach for improving the reliability of broadband Internet access with multihoming.Comment: 15 pages, 14 figures, 6 table

    vSkyConf: Cloud-assisted Multi-party Mobile Video Conferencing

    Get PDF
    As an important application in the busy world today, mobile video conferencing facilitates virtual face-to-face communication with friends, families and colleagues, via their mobile devices on the move. However, how to provision high-quality, multi-party video conferencing experiences over mobile devices is still an open challenge. The fundamental reason behind is the lack of computation and communication capacities on the mobile devices, to scale to large conferencing sessions. In this paper, we present vSkyConf, a cloud-assisted mobile video conferencing system to fundamentally improve the quality and scale of multi-party mobile video conferencing. By novelly employing a surrogate virtual machine in the cloud for each mobile user, we allow fully scalable communication among the conference participants via their surrogates, rather than directly. The surrogates exchange conferencing streams among each other, transcode the streams to the most appropriate bit rates, and buffer the streams for the most efficient delivery to the mobile recipients. A fully decentralized, optimal algorithm is designed to decide the best paths of streams and the most suitable surrogates for video transcoding along the paths, such that the limited bandwidth is fully utilized to deliver streams of the highest possible quality to the mobile recipients. We also carefully tailor a buffering mechanism on each surrogate to cooperate with optimal stream distribution. We have implemented vSkyConf based on Amazon EC2 and verified the excellent performance of our design, as compared to the widely adopted unicast solutions.Comment: 10 page

    Analysis and implementation of the Large Scale Video-on-Demand System

    Full text link
    Next Generation Network (NGN) provides multimedia services over broadband based networks, which supports high definition TV (HDTV), and DVD quality video-on-demand content. The video services are thus seen as merging mainly three areas such as computing, communication, and broadcasting. It has numerous advantages and more exploration for the large-scale deployment of video-on-demand system is still needed. This is due to its economic and design constraints. It's need significant initial investments for full service provision. This paper presents different estimation for the different topologies and it require efficient planning for a VOD system network. The methodology investigates the network bandwidth requirements of a VOD system based on centralized servers, and distributed local proxies. Network traffic models are developed to evaluate the VOD system's operational bandwidth requirements for these two network architectures. This paper present an efficient estimation of the of the bandwidth requirement for the different architectures.Comment: 9 pages, 8 figure

    Building Internet caching systems for streaming media delivery

    Get PDF
    The proxy has been widely and successfully used to cache the static Web objects fetched by a client so that the subsequent clients requesting the same Web objects can be served directly from the proxy instead of other sources faraway, thus reducing the server\u27s load, the network traffic and the client response time. However, with the dramatic increase of streaming media objects emerging on the Internet, the existing proxy cannot efficiently deliver them due to their large sizes and client real time requirements.;In this dissertation, we design, implement, and evaluate cost-effective and high performance proxy-based Internet caching systems for streaming media delivery. Addressing the conflicting performance objectives for streaming media delivery, we first propose an efficient segment-based streaming media proxy system model. This model has guided us to design a practical streaming proxy, called Hyper-Proxy, aiming at delivering the streaming media data to clients with minimum playback jitter and a small startup latency, while achieving high caching performance. Second, we have implemented Hyper-Proxy by leveraging the existing Internet infrastructure. Hyper-Proxy enables the streaming service on the common Web servers. The evaluation of Hyper-Proxy on the global Internet environment and the local network environment shows it can provide satisfying streaming performance to clients while maintaining a good cache performance. Finally, to further improve the streaming delivery efficiency, we propose a group of the Shared Running Buffers (SRB) based proxy caching techniques to effectively utilize proxy\u27s memory. SRB algorithms can significantly reduce the media server/proxy\u27s load and network traffic and relieve the bottlenecks of the disk bandwidth and the network bandwidth.;The contributions of this dissertation are threefold: (1) we have studied several critical performance trade-offs and provided insights into Internet media content caching and delivery. Our understanding further leads us to establish an effective streaming system optimization model; (2) we have designed and evaluated several efficient algorithms to support Internet streaming content delivery, including segment caching, segment prefetching, and memory locality exploitation for streaming; (3) having addressed several system challenges, we have successfully implemented a real streaming proxy system and deployed it in a large industrial enterprise

    Towards a scalable video interactivity solution over the IMS

    Get PDF
    Includes bibliographical references (leaves 72-76).Rapid increase in bandwidth and the interactive and scalability features of the Internet provide a precedent for a converged platform that will support interactive television. Next Generation Network platforms such as the IP Multimedia Subsystem (IMS) support Quality of Service (QoS), fair charging and possible integration with other services for the deployment of IPTV services. IMS architecture supports the use of the Session Initiation Protocol (SIP) for session control and the Real Time Streaming Protocol (RTSP) for media control. This study aims to investigate video interactivity designs over the Internet using an evaluation framework to examine the performance of both SIP and RTSP protocols over the IMS over different access networks. It proposes a Three Layered Video Interactivity Framework (TLVIF) to reduce the video processing load on a server
    • …
    corecore