14,463 research outputs found

    Improving groupware design for loosely coupled groups

    Get PDF
    Loosely coupled workgroups are common in the real world, and workers in these groups are autonomous and weakly interdependent. They have patterns of work and collaboration that distinguish them from other types of groups, and groupware systems that are designed to support loose coupling must address these differences. However, they have not been studied in detail in Computer-Supported Cooperative Work (CSCW), and the design process for these groups is currently underspecified. This forces designers to start from scratch each time they develop a system for loosely coupled groups, and they must approach new work settings with little information about how work practices are organized. In this dissertation, I present a design framework to improve the groupware design process for loosely coupled workgroups. The framework has three main parts that add a new layer of support to each of the three stages in the general groupware design process: data collection about the target work setting, analysis of the data, and system design based on the analysis results. The framework was developed to provide designers with support during each of these stages so that they can consider important characteristics of loosely coupled work practice while carrying out design for the target group. The design framework is based on information from CSCW and organizational research, and on real-world design experiences with one type of loosely coupled workgroup—home care treatment teams. The framework was evaluated using observations, interviews, and field trials that were carried out with multidisciplinary home care treatment teams in Saskatoon Health Region. A series of field observations and interviews were carried out with team members from each of the home care disciplines. The framework was then used to develop Mohoc, a groupware system that supports work in home care. Two field trials were carried out where the system was used by teams to support their daily activities. Results were analyzed to determine how well each part of the design framework performed in the design process. The results suggest that the framework was able to fill its role in specializing the general CSCW design process for loosely coupled groups by adding consideration for work and collaboration patterns that are seen in loosely coupled settings. However, further research is needed to determine whether these findings generalize to other loosely coupled workgroups

    Seamful interweaving: heterogeneity in the theory and design of interactive systems

    Get PDF
    Design experience and theoretical discussion suggest that a narrow design focus on one tool or medium as primary may clash with the way that everyday activity involves the interweaving and combination of many heterogeneous media. Interaction may become seamless and unproblematic, even if the differences, boundaries and 'seams' in media are objectively perceivable. People accommodate and take advantage of seams and heterogeneity, in and through the process of interaction. We use an experiment with a mixed reality system to ground and detail our discussion of seamful design, which takes account of this process, and theory that reflects and informs such design. We critique the 'disappearance' mentioned by Weiser as a goal for ubicomp, and Dourish's 'embodied interaction' approach to HCI, suggesting that these design ideals may be unachievable or incomplete because they underemphasise the interdependence of 'invisible' non-rationalising interaction and focused rationalising interaction within ongoing activity

    HoPP: Robust and Resilient Publish-Subscribe for an Information-Centric Internet of Things

    Full text link
    This paper revisits NDN deployment in the IoT with a special focus on the interaction of sensors and actuators. Such scenarios require high responsiveness and limited control state at the constrained nodes. We argue that the NDN request-response pattern which prevents data push is vital for IoT networks. We contribute HoP-and-Pull (HoPP), a robust publish-subscribe scheme for typical IoT scenarios that targets IoT networks consisting of hundreds of resource constrained devices at intermittent connectivity. Our approach limits the FIB tables to a minimum and naturally supports mobility, temporary network partitioning, data aggregation and near real-time reactivity. We experimentally evaluate the protocol in a real-world deployment using the IoT-Lab testbed with varying numbers of constrained devices, each wirelessly interconnected via IEEE 802.15.4 LowPANs. Implementations are built on CCN-lite with RIOT and support experiments using various single- and multi-hop scenarios

    Principles and Concepts of Agent-Based Modelling for Developing Geospatial Simulations

    Get PDF
    The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded. The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Exploring loose coupling in system interaction

    Get PDF
    The concept of loose coupling is used in various disciplines, such as organisation science, computer science, information systems and geography, but its definition and application is elusive. In this paper we investigate the roots and meanings of the concept, and ask two research questions: (i) How is the concept of loose coupling used within streams of IS research? And (ii) how can we apply the concept to design the system interaction within the field of IS? Our method is a systematic review of the literature, where we identify the definitions and uses, conduct a cross-disciplinary meta-analysis, and deduct a framework for analysing and using the principle of loose coupling. We then discuss implications for the dynamics of information infrastructures. We offer two contributions. First, we provide a comprehensive overview of the loose coupling research, and gives rich insight into uses of the concept. Second, we propose a framework where we synthesize the insights

    Single Value Devices

    Get PDF
    We live in a world of continuous information overflow, but the quality of information and communication is suffering. Single value devices contribute to the information and communication quality by fo- cussing on one explicit, relevant piece of information. The information is decoupled from a computer and represented in an object, integrates into daily life. However, most existing single value devices come from conceptual experiments or art and exist only as prototypes. In order to get to mature products and to design meaningful, effective and work- ing objects, an integral perspective on the design choices is necessary. Our contribution is a critical exploration of the design space of single value devices. In a survey we give an overview of existing examples. The characterizing design criteria for single value devices are elaborated in a taxonomy. Finally, we discuss several design choices that are specifically important for moving from prototypes to commercializable products

    From open resources to educational opportunity

    Get PDF
    Since MIT’s bold announcement of the OpenCourseWare initiative in 2001, the content of over 700 of its courses have been published on the Web and made available for free to the world. Important infrastructure initiatives have also been launched recently with a view to enabling the sustainable implementation of these educational programmes, through strengthening organizational capacity as well as through building open, standards‐based technology. Each of these initiatives point to a rich palette of transformational possibilities for education; together with the growing open source movement, they offer glimpses of a sustainable ecology of substantial and quality educational resources. This discussion piece will highlight some of the educational opportunity presented by MIT’s current information technology‐enabled educational agenda and related initiatives, along with their strategic underpinnings and implications. It will address various dimensions of their impact on the form and function of education. It will examine how these ambitious programmes achieve a vision characterized by an abundance of sustainable, transformative educational opportunities, not merely pervasive technology

    Evolutionary robotics and neuroscience

    Get PDF
    No description supplie
    corecore