240,612 research outputs found

    A Software Framework for Storing User Workspaces of Desktop Applications

    Get PDF
    There are many design problems faced in user interface design of desktop applications. For most of the problems there is some suitable design pattern or existing software component to cope the problem, without having to spend too much design time on it. This research concentrates on one design problem repeatedly faced when designing desktop applications; storing and restoring user workspaces. The main goal of this thesis is to solve presented design problem by constructing a design model for a software component which can be used in the upcoming application projects. The aim is also to build this design as an external software framework and to test its applicability in practice. The solution developed during this research will be built and evaluated through a case study at an industrial software subcontractor company. Constructive research approach is used as the research method for this study, because the purpose of this thesis is to produce a practically relevant solution for an explicit problem, which is usually the baseline of a constructive study. At first, the theory related to the subject is presented and discussed. Existing project documentation in the case organization is studied to gather the requirements for the solution. How to create the solution as a reusable software framework is also discussed. Collected theoretical knowledge is then applied in practice by building the software framework. Practical relevance of the software framework is evaluated by deploying it to different types of application projects. The testing is performed by a group of software designers working in the case organization. A questionnaire then held for the software designers shows that the developed framework succeeds to fulfill its requirements.fi=OpinnÀytetyö kokotekstinÀ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LÀrdomsprov tillgÀngligt som fulltext i PDF-format

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)

    Tracing the Scenarios in Scenario-Based Product Design: a study to support scenario generation

    Get PDF
    Scenario-based design originates from the human-computer interaction and\ud software engineering disciplines, and continues to be adapted for product development. Product development differs from software development in the former’s more varied context of use, broader characteristics of users and more tangible solutions. The possible use of scenarios in product design is therefore broader and more challenging. Existing design methods that involve scenarios can be employed in many different stages of the product design process. However, there is no proficient overview that discusses a\ud scenario-based product design process in its full extent. The purposes of creating scenarios and the evolution of scenarios from their original design data are often not obvious, although the results from using scenarios are clearly visible. Therefore, this paper proposes to classify possible scenario uses with their purpose, characteristics and supporting design methods. The classification makes explicit different types of scenarios and their relation to one another. Furthermore, novel scenario uses can be referred or added to the classification to develop it in parallel with the scenario-based design\ud practice. Eventually, a scenario-based product design process could take inspiration for creating scenarios from the classification because it provides detailed ï»żcharacteristics of the scenario

    Process of designing robust, dependable, safe and secure software for medical devices: Point of care testing device as a case study

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Copyright © 2013 Sivanesan Tulasidas et al. This paper presents a holistic methodology for the design of medical device software, which encompasses of a new way of eliciting requirements, system design process, security design guideline, cloud architecture design, combinatorial testing process and agile project management. The paper uses point of care diagnostics as a case study where the software and hardware must be robust, reliable to provide accurate diagnosis of diseases. As software and software intensive systems are becoming increasingly complex, the impact of failures can lead to significant property damage, or damage to the environment. Within the medical diagnostic device software domain such failures can result in misdiagnosis leading to clinical complications and in some cases death. Software faults can arise due to the interaction among the software, the hardware, third party software and the operating environment. Unanticipated environmental changes and latent coding errors lead to operation faults despite of the fact that usually a significant effort has been expended in the design, verification and validation of the software system. It is becoming increasingly more apparent that one needs to adopt different approaches, which will guarantee that a complex software system meets all safety, security, and reliability requirements, in addition to complying with standards such as IEC 62304. There are many initiatives taken to develop safety and security critical systems, at different development phases and in different contexts, ranging from infrastructure design to device design. Different approaches are implemented to design error free software for safety critical systems. By adopting the strategies and processes presented in this paper one can overcome the challenges in developing error free software for medical devices (or safety critical systems).Brunel Open Access Publishing Fund

    A deeply embedded sociotechnical strategy for designing ICT for development

    Get PDF
    This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it. Published version DEARDEN, Andy and RIZVI, Haider (2009). A deeply embedded sociotechnical strategy for designing ICT for development. International journal of sociotechnology and knowledge development, 1 (4), 52-70. Repository use policy Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in SHURA to facilitate their private study or for noncommercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain. Sheffield Hallam University Research Archiv
    • 

    corecore