
UNIVERSITY OF VAASA

FACULTY OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

Arvi Lehesvuo

A SOFTWARE FRAMEWORK FOR STORING USER WORKSPACES OF

DESKTOP APPLICATIONS

Master’s thesis in Technology for the degree of Master of Science in Technology

submitted for inspection, Vaasa, June 30, 2012.

Supervisor Prof. Jouni Lampinen

Instructor M.Sc. Pasi Pelkkikangas

1

TABLE OF CONTENTS page

ABBREVIATIONS 3

LIST OF FIGURES 4

TIIVISTELMÄ 5

ABSTRACT 6

1. INTRODUCTION 7

1.1. Company Introduction: Wapice Ltd 8

1.2. Professional Background Statement 9

1.3. The Scope of the Research 9

1.4. Research Questions 10

2. RESEARCH METHODOLOGY 12

2.1. Constructive Research Approach 12

2.2. Research Process as Applied in This Research 13

3. THEORY AND BACKGROUND OF THE STUDY 17

3.1. Introduction to the Subject 17

3.2. History of Object Oriented Programming 17

3.3. Most Central Elements in Object Oriented Programming 19

3.4. More Advanced Features of Object Oriented Programming 25

3.5. Software Design Patterns 27

3.6. Graphical User Interface Programming 34

4. DEVELOPING THE SOLUTION 39

4.1. Identifying the Solution Requirements 39

4.2. Designing Basic Structure for the Solution 43

4.3. Building the Solution as an External Software Component 47

4.4. Storing the User Data 48

4.5. Optimizing Construction for C# 51

2

5. EVALUATING PRACTICAL RELEVANCE OF THE DESIGN 54

5.1. Testing Design by applying it to Different GUI Design Models 54

5.2. Analyzing Results of the User Questionnaire 57

6. CONCLUSIONS AND FUTURE 61

6.1. Practical Contribution 62

6.2. Theoretical Connection 63

6.3. Future Research 63

REFERENCES 65

APPENDIX 1. User Questionnaire for Software Designers and Results

3

ABBREVIATIONS

C# C Sharp programming language is a multi-paradigm
programming language developed by Microsoft.

.NET The .NET Framework is a software framework developed by
Microsoft. .NET runs primarily on Microsoft Windows
operating system.

PC Personal Computer is any general-purpose computer whose
size and capabilities makes it useful for individuals.

UML Unified Modeling Language is a standardized general-purpose
modeling language in the field of object oriented software
engineering.

IoC Inversion of Control is an object oriented programming
practice whereby the object coupling is bound at run time.

MVC Model–View–Controller is an architectural pattern used for
building user interfaces.

MVP Model–view–presenter is a derivative of the MVC pattern, also
used mostly for building user interfaces.

MVVM Model-View-ViewModel is an architectural pattern targeted in
modern UI development, originated from Microsoft.

OOP Object Oriented Programming is a programming paradigm that
uses abstraction to create models based on the real world.

CAN CAN bus for Controller Area Network is a communication
standard designed to allow microcontrollers and devices to
communicate with each other.

GUI Graphical User Interface is a type of user interface that allows
users to interact with electronic devices with images rather than
text commands.

SDI Single Document Interface is a method of organizing graphical
user interface applications into individual windows that are
handled separately by the operating system.

TDI Tabbed Document Interface is a GUI model that allows
multiple documents to be contained within a single window,
using tabs as a navigational widget.

MDI Multiple Document Interface is a GUI model where windows
reside under a single parent window.

API Application Programming Interface is a source code-based
specification intended to be used as an interface by software
components to communicate with each other.

4

LIST OF FIGURES page

Figure 1. Elements of Constructive Research 13

Figure 2. Polymorphism Example 23

Figure 3. Example of Generic Class Usage 24

Figure 4. Different attribute and operation types presented in UML diagram 25

Figure 5. Structure of Object Adapter Pattern 29

Figure 6. Structure of Factory Method Pattern 30

Figure 7. Structure of Memento Pattern 31

Figure 8. Structure of Abstract Factory Pattern 32

Figure 9. The Dependencies for a Dependency Injector 34

Figure 10. Structure of Model-View-Controller Pattern 35

Figure 11. Passive View and Supervising Controller 37

Figure 12. Structure of Model-View-ViewModel Pattern 38

Figure 13. Example Implementation of Three Tier Architecture 40

Figure 14. Firefox Web Browser Utilizing SDI & TDI 42

Figure 15. TDI Application Example 43

Figure 16. TDI Application Example with a Storable Workspace 44

Figure 17. TDI Application Example with Storable Workspace Tree 46

Figure 18. TDI Application Utilizing Workspace Framework 47

Figure 19. Serialization Wrappers of Workspace Framework 49

Figure 20. Workspace Framework Optimized for C# 51

Figure 21. Example of Workspace Framework Usage without Design Pattern 55

Figure 22. Example of Workspace Framework Usage with MVVM Design Pattern 56

5

VAASAN YLIOPISTO
Teknillinen tiedekunta
Tekijä: Arvi Lehesvuo
Diplomityön nimi: Ohjelmistokehys käyttäjän työtilojen tallentamiseen

työpöytäsovelluksissa
Valvojan nimi: Jouni Lampinen
Ohjaajan nimi: Pasi Pelkkikangas
Tutkinto: Diplomi-insinööri
Koulutusohjelma: Tietotekniikan koulutusohjelma
Suunta: Ohjelmistotekniikka
Opintojen aloitusvuosi: 2007
Diplomityön valmistumisvuosi: 2012 Sivumäärä: 68

TIIVISTELMÄ:

Työpöytäsovellusten käyttöliittymien toteuttamiseen liittyy useita suunnitteluongelmia.
Useimmat näistä ongelmista voidaan ratkaista olemassa olevan suunnittelumallin tai
ohjelmistokomponentin avulla. Tämä tutkimus keskittyy yhden tällaisen
työpöytäsovellusten kehittämiseen liittyvän suunnitteluongelman, käyttäjän työtilojen
tallentamisen ja palauttamisen tutkimiseen.

Työn tavoitteena on ratkaista esitetty ongelma rakentamalla suunnittelumalli
ohjelmistokomponentille, jota voidaan hyödyntää ongelman ratkaisemiseen tulevissa
ohjelmistoprojekteissa. Tarkoituksena on myös toteuttaa tämä malli ulkoisena
ohjelmistokirjastona, sekä testata sen soveltuvuutta käytännössä.

Tutkimuksen aikana kehitetty ratkaisu rakennetaan tapaustutkimuksen kautta
teollisuudelle ohjelmistoalihankintaa tarjoavassa yrityksessä. Tutkimuksen
tarkoituksena on rakentaa ratkaisu reaalimaailman ongelmaan, joten
tutkimusmetodologiaksi valittiin konstruktiivinen tutkimusote.

Aluksi työssä käydään läpi ja pohdiskellaan asiaan liittyvää teoriaa, sekä ratkaisulle
kerätään vaatimuksia tutkimalla kohdeorganisaation olemassa olevaa
projektidokumentaatiota. Työssä pohditaan myös miten ratkaisu on mahdollista
rakentaa ulkoisena ohjelmakirjastona. Myöhemmin kerättyä teoreettista tietoa
sovelletaan käytännössä toteuttamalla ohjelmakirjasto.

Ohjelmakirjaston käytännön soveltuvuutta testataan ottamalla se käyttöön useassa
erityyppisessä sovellusprojektissa. Testauksen suorittaa ryhmä kohdeorganisaatiossa
työskenteleviä ohjelmistosuunnittelijoita. Myöhemmin suunnittelijoille suoritetulla
kyselyllä todistetaan, että ohjelmakirjasto täyttää sille asetetut vaatimukset.

AVAINSANAT: ohjelmistotuotanto, suunnittelumalli, ohjelmistokehys, työtila,
työpöytäsovellus

6

UNIVERSITY OF VAASA
Faculty of technology
Author: Arvi Lehesvuo
Topic of the Thesis: A Software Framework for Storing User

Workspaces of Desktop Applications
Supervisor: Jouni Lampinen
Instructor: Pasi Pelkkikangas
Degree: Master of Science in Technology
Degree Programme: Degree Programme in Computer Science
Major of Subject: Software Engineering
Year of Entering the University: 2007
Year of Completing the Thesis: 2012 Pages: 68

ABSTRACT:

There are many design problems faced in user interface design of desktop applications.
For most of the problems there is some suitable design pattern or existing software
component to cope the problem, without having to spend too much design time on it.
This research concentrates on one design problem repeatedly faced when designing
desktop applications; storing and restoring user workspaces.

The main goal of this thesis is to solve presented design problem by constructing a
design model for a software component which can be used in the upcoming application
projects. The aim is also to build this design as an external software framework and to
test its applicability in practice.

The solution developed during this research will be built and evaluated through a case
study at an industrial software subcontractor company. Constructive research approach
is used as the research method for this study, because the purpose of this thesis is to
produce a practically relevant solution for an explicit problem, which is usually the
baseline of a constructive study.

At first, the theory related to the subject is presented and discussed. Existing project
documentation in the case organization is studied to gather the requirements for the
solution. How to create the solution as a reusable software framework is also discussed.
Collected theoretical knowledge is then applied in practice by building the software
framework.

Practical relevance of the software framework is evaluated by deploying it to different
types of application projects. The testing is performed by a group of software designers
working in the case organization. A questionnaire then held for the software designers
shows that the developed framework succeeds to fulfill its requirements.

KEYWORDS: software engineering, design pattern, framework, user workspace,
desktop application

7

1. INTRODUCTION

The usage of PC software tools in part of industrial environment is constantly growing.

In the past, seven segment displays or LCD-screen, later substituted by embedded touch

screen devices were mainly used as user interfaces in embedded device control. Since

the computers are constantly getting smaller while processing power is getting better,

tablet PCs are increasing their market share also in the industrial environment.

Embedded touch screen devices usually require special implementation, because of

limitations in device performance and for this reason designing software to operate on

them requires special architecture, usually with reduced functionalities. Nowadays

tablet devices are starting to be as powerful as normal desktop PCs and using same

operating systems. This is why it is possible to design same software to be compatible

in all the devices, tablets as well as laptops and desktops. This thesis focuses on

applications developed for personal computers used in machinery control.

There are many design problems faced in user interface design of desktop applications.

For most of the problems there is some suitable design pattern or existing software

component to cope the problem, without having to spend too much design time on it.

This research concentrates on one design problem repeatedly faced with designing

desktop applications. Although same design problem can be found on almost any kind

of desktop applications, this thesis focuses on software used for controlling or

monitoring of some kind of machinery.

Usually parameterization of a device or a set of devices is not a fast task to do and it

might require several workdays. Sometimes task started on one day, will continue after

few days from the same situation it was left on. This creates need to make a checkpoint,

from which to continue later. This kind of checkpoint can be created by storing the

workspace user has created on the application. Checkpoint can be then restored to the

same state on some other time. In industrial control software workspace might contain

for example opened connections to different devices, parameterization files,

configuration data, monitoring views, etc.

8

In a preliminary research, the target organization has not managed to find any free or

commercial solution for resolving this design problem easily. Most of the software

developed, the problem is usually solved by creating some custom solution to store

whatever is required for that application. The purpose of this research is to find a way to

create a reusable design to overcome this issue in upcoming application projects without

spending too much project resources and work time.

The demand for this research came from actual real-world need to develop similar

solutions for two applications at same time. Other application is used to parameterize

variable speed AC drives and other one is used to control hydraulic device for

tightening motor parts. In both of these cases there were need to continue work from the

same situation after some period of time elapsed in between different process steps.

This research pursues to construct a design model to be suitable for as many software

languages and platforms as possible, but the reference implementation presented mainly

targets software designed for Windows operating systems using C# programming

language and .NET Framework.

The solution developed during this research is built and evaluated through a case study

at an industrial software subcontractor company called Wapice Ltd. While writing this

thesis the author has been working as a software engineer in the target organization.

Constructive research approach was chosen as the research method for this study,

because the purpose of this thesis is to produce a practically relevant solution for an

explicit problem, which is usually the baseline of a constructive study.

1.1. Company Introduction: Wapice Ltd

The subject for this thesis was provided by a company called Wapice Ltd. Wapice is an

independent information technology service company, currently employing 190

software professionals. Wapice is specialized in solving the problems faced by

industrial companies and designing solutions to meet their needs. Wapice organization

structure is divided in three different segments; Embedded Systems, Industrial Systems

9

and Business Solutions. Provider for this thesis subject in Wapice organization was the

Industrial Systems segment, since one of its tasks is to design graphical user interface

solutions for industrial needs.

1.2. Professional Background Statement

The author of this thesis is a Master of Science student in Computer Science department

at the Vaasa University, majoring in Computer Science. In addition to educational

background he has worked slightly over six years as a software engineer in Wapice Ltd

designing and developing industrial software solutions. First couple of years he has

worked mainly with embedded systems, but for last four years he have been

specializing in PC tool development, mainly with C# and .NET Framework. In his

current work his interests include especially beneficial and profitable exploitation of

object oriented software design patterns, especially with user interface design

techniques.

1.3. The Scope of the Research

The main purpose of this study is to find a way to easily solve a practical problem,

which is faced in most of the user interface application developed. The results of the

study should provide a design for a software component that can be used in future

applications and this way to reduce development time in the beginning of new projects.

The goal is also to implement this design as an external software framework and test its

applicability in practice.

At first, the theory related to the subject is presented, then explaining how this theory is

applied in the actual design. It is expected that the reader of this research is familiar to

computer programming in some level and is capable of reading basic UML class

diagrams. Since the actual need for this research came from two different desktop

applications both implemented using C# programming language and .NET Framework,

the practical solution constructed in this thesis is implemented using these same

techniques.

10

1.4. Research Questions

Following research questions were raised in order to achieve the targets set:

1. How to design a solution for saving user workspace of a desktop application?

This is the main research question and forms the basis for the rest of the research

questions. To answer this question it is required to:

- Study existing projects and upcoming project documentation for gathering the

requirements for the solution.

- Identify all the common design problems faced in these projects to be able to build a

design, which provides solutions for these problems.

The answer for these questions will be given based on the research done in the target

company.

2. How to build the solution as a reusable software component?

After identifying the actual problems and finding the requirements for the design, it is

needed to study, if it is possible make one reusable solution, which solves problems in

all the studied software projects at once. To solve this issue, it is required to:

- Recognize what kind of challenges building the solution as an external component will

represent.

- Understand software architectural needs of potential projects, which shall be using the

constructed solution.

- Study different GUI programming patterns to be able to design commonly suitable

solution.

11

The answer to these questions will be given based on literature review.

3. How does the constructed solution help to improve the efficiency of GUI

application development within the target organization?

The last question helps to evaluate the results of this study. The answer will be

reclaimed through a questionnaire held for software designers who have tested the

solution by deploying it in to their project.

12

2. RESEARCH METHODOLOGY

In this chapter, the research methodology used in this thesis is presented. At first, the

constructive research approach is explained, and then followed by a description how it

is applied in this research.

Constructive research is a research approach that can be described as managerial

problem solving through the construction of models, diagrams, plans, organizations, etc.

Several examples of constructive approach can be found in operations research,

management accounting, and clinical medicine as well as in technical sciences

(Kasanen, Lukka & Siitonen 1993: 245). The reason for selecting the constructive

research approach was the need for doing practically relevant research for solving a real

world problem. The constructive research approach was reported to suit well for this

purpose (Kasanen et al. 1993; Lukka 2003).

2.1. Constructive Research Approach

The constructive research approach is a research procedure for creating innovative

constructions that pursues to solve problems faced in the real world, and by this way to

make a theoretical contribution on the subject where it is applied. Case studies using

constructive research approach aims at creating knowledge how research problem can

be solved with a new innovation, or how the new solutions is better than already

existing ones. Typical for these solutions is that they are invented and developed, not

discovered. (Lukka 2003: 83-84.)

Mathematical algorithms or other new mathematical entities provide examples of

theoretical constructions. As well as in medicine, development of a new

pharmaceuticals or a treatment can be considered as constructions (Kasanen et al. 1993:

245). Characteristic for constructive research is that it focuses in real-world problems

felt relevant to be solved in practice. Research should produce an innovation to solve

the problem while implementing an construction that can be tested in practice. It is

common that researcher works very closely to the practitioners in a team-like co-

13

operation, where practical learning is expected to take place (Lukka 2003: 84). It is also

important that prior theoretical knowledge on the subject is studied and the empirical

findings on the research are reflected back to the theory (Lukka 2003: 84). The key

elements of constructive research approach are illustrated in figure 1.

Figure 1. Elements of Constructive Research (Kasanen et al. 1993: 246.)

In an ideal case the constructive research produces an resolution to the real-world

problem by producing a new construction with both practical and theoretical

contributions (Lukka 2003: 85). A good practical solution would be probably

satisfactory result for project stakeholders, however a fail on practical level can still

produce significant theoretical results.

2.2. Research Process as Applied in This Research

According to Lukka (2003), there are seven crucial steps in the constructive research

approach. This chapter introduces these steps followed by an explanation how the steps

are applied in this research.

(1) Find a practically relevant problem, which also has potential for theoretical

contribution.

(2) Examine the potential for long-term research co-operation with the target

organization(s).

(3) Obtain a deep understanding of the topic area practically and theoretically.

14

(4) Innovate a solution idea and develop a problem solving construction with

theoretical contribution potential.

(5) Implement the solution and test how it works in practice.

(6) Examine the scope of the solution’s applicability.

(7) Identify and analyze the theoretical contribution.

Although the steps are presented in sequential order, they are not necessarily executed

in that order, since the research process is usually highly iterative. This research was no

exception, since new solution ideas were discovered during the implementation phase

and the solution were partly re-designed few times during the implementation.

Following explains how the seven steps of research are applied in this study:

1. Selecting the research topic is the most important phase in every research project. The

research outcome should produce a practical contribution, but also have good research

potential (Lukka 2003: 86). In this study the research problem is that software

developers in the case organization implement different solutions to solve similar design

problem, again in several projects, producing yet another solutions that cannot be reused

because its design does not fulfill requirements set by other projects. A solution for this

problem would be designing a reusable software component, which could be taken into

use in every similar software projects, this way saving a lot of development time during

the project cycle. However this kind of readymade solutions does not yet exist.

2. The idea for the research project came from the author himself, while working in the

target company as a software designer on two different projects with similar needs for

user workspace storing. Case organization agreed that research should be done, because

it would probably save total design time on these two projects, but also provide a

readymade solution for upcoming projects. Small review group were gathered from the

15

organization experts to review study outcome and provide knowledge during the

research process.

3. The theoretical knowledge for this project was gathered studying relevant literature

on object oriented software patterns and GUI design models. There are several different

ways of implementing GUI software, so obtaining adequate knowledge of most

common patterns was crucial to be able to produce commonly reusable solution.

Practical knowledge of projects implementation techniques were mainly gathered by

from software experts in case organization. Recognizing needs of different projects was

necessary for developing construction that is really useful and beneficial for upcoming

projects of the organization.

4. During this step suitable techniques were selected for creating a solution idea and

basic design for construction were built. According to Lukka (2003: 87) this is the

critical step in the research, since if innovative construction cannot be designed there is

no point of going forward with the project. In this study the construction is a software

framework designed to provide certain basic functionality and this way improving

efficiency of developing graphical user interface applications.

5. Next, the actual solution was implemented according to the model designed in

previous phase. Also pilot software was implemented to test how functionalities of the

constructed software framework worked in practice with different GUI design patterns.

Also a test group of software designers in the target organization deployed the software

framework to their projects.

6. During this phase of the process researcher should step back from the empirical work

and analyze the results together with the target organization (Lukka 2003: 88-89). At

this point the results of the final solution were analyzed. A questionnaire was made for

the software designers who tested the framework to grade its functionality and

usefulness. Eventually conclusions based on user questionnaire were drawn.

16

7. From the academic point of view it is crucial that the researcher is able to explicate

the theoretical contribution of the project (Lukka 2003: 89). In this final phase the

theoretical contribution of this project will be identified and analyzed.

Table 1. Relations between research steps and chapters of this study

Step in research process Chapters where applied

1. Find a practically relevant problem, which also has

potential for theoretical contribution.

Chapter 1

2. Examine the potential for long-term research cooperation

with the target organization(s).

Chapter 1

3. Obtain a deep understanding of the topic area practically

and theoretically.

Chapter 3, 4

4. Innovate a solution idea and develop a problem solving

construction with theoretical contribution potential.

Chapter 4

5. Implement the solution and test how it works in practice. Chapter 5

6. Examine the scope of the solution’s applicability. Chapter 5

7. Identify and analyze the theoretical contribution. Chapter 6

17

3. THEORY AND BACKGROUND OF THE STUDY

There are many different programming tools and patterns available for creating

programs containing graphical user interface. However the target organization has not

managed to find a reusable component for storing user workspaces of desktop

applications. Although this kind of ready-made component could be found through a

more extensive research, the target organization decided to build their own solution to

be able to tailor it when needed, according to their needs.

This study is limited to two of the most commonly used programming languages at the

target organization; C# and Java. Both of the techniques mentioned are object oriented

programming languages. To understand the core of the research problem it is crucial to

have some basic knowledge of object oriented programming and related theory. This

chapter introduces reader to basics of object oriented programming and presents some

commonly used software patterns applied in this study.

3.1. Introduction to the Subject

Since this thesis mainly studies and considers issues around object oriented

programming and related design patterns, this chapter introduces reader to the basics of

object oriented programming. Also some of the basic patterns used and some more

advanced software libraries used to construct of this study will be presented.

3.2. History of Object Oriented Programming

“Object: A thing presented to or capable of being presented to the senses.” This is one

of the phrases can be found by looking it up from the dictionary. It generally means that

an object can be just about anything. The word oriented in turn is usually defined as

“directed towards”. With this logic, object oriented can be defined as; directing towards

just about anything you can think of. No wonder that the software industry have been

struggling coming up with the agreed definition “object oriented”. (Meilir 1999: 1-2.)

18

So what is the object oriented programming? It is commonly believed that object

oriented programming (OOP) is product of 1980’s, when the C language was moved

into object oriented world by Bjarne Stroustrup creating C++ language. Actually earliest

object oriented languages were created in the 1960’s. They were called SIMULA 1

(1962) and Simula 67 (1967). These earlier languages contained most of the OOP

advantages, but it was not until the 1990’s when C++ made its breakthrough and OOP

began to truly flourish. (Purdum 2008: 4-5.)

Next step in OOP development was 1991, when James Gosling, Mike Sheridan, and

Patrick Naughton initiated project to develop new programming language for intelligent

electronic devices capable of being centrally controlled. Language was originally named

as Oak after oak tree outside Goslings window. Language was later renamed as Java,

since they discovered that name Oak was already used by another programming

language. (Purdum 2008: 4-5.)

Java was quickly noticed by the big audience and grew popularity along rapidly

growing popularity of the World Wide Web. Java was shortly integrated part of various

web browsers and the ability to run Java on web browsers improved web functionalities

significantly, this way providing more boost to the growth of the World Wide Web

itself. It is typical for Java, that applications are compiled to byte-code, which can be

run on any Java Virtual Machine regardless of the computer architecture. (Purdum

2008: 4-5.)

C#, which is by many programmers said to be Microsoft's answer to Java, is a

programming language developed 2001, by team lead by Anders Hejlsberg. According

to the C# Language Specification, it is intended to be a simple, modern, and general-

purpose, object oriented programming language. C# contains several features aiding in

the construction of robust and durable applications. Its garbage collection automatically

reclaims memory occupied by unused objects, so programmer does not basically have to

take care of memory handling. Exception handling provides extensible approach to error

19

detection and recovery. Also type-safe design makes it impossible to have uninitialized

variables or to perform unchecked type casts. (Ecma International, 2006)

3.3. Most Central Elements in Object Oriented Programming

To understand the ultimate reason for this research, it is crucial to understand the basics

of programming and more closely the basics of object oriented programming. Since this

is quite large subject and it cannot be fully covered in this thesis, only the central

elements of object oriented programming will be introduced. According to Meilir

(1999: 3) there are nine central concepts in object orientation; encapsulation,

information hiding, state retention, object identity, messages, classes, inheritance,

polymorphism and genericity. In this chapter these elements will be introduced with

small examples. Also concept of class access modifiers will be introduced.

Encapsulation is one of the basic concepts in software that are almost as old as

software itself. Meilir (1999: 9) defines encapsulation as grouping of related ideas into

one unit, which can thereafter be referred to by a single name.

When it was noticed, that same patterns would appear multiple times inside same

program, it was invented to call the same block of code from multiple points of the

program by same name, which created the concept called as subroutine. Using

subroutines was a good way of saving computer memory and also presented a clear way

for programmers to consider and manipulate certain block of code as a single idea.

Object oriented encapsulation has an idea similar to subroutines, but is structurally more

sophisticated. An object can consist of a set of attributes and operations. Attributes

represents some information that the object holds. Operation in turn is a procedure or a

function which can be used for modifying the object attributes or providing some other

functionality. In object oriented encapsulation can be defined as packaging operations

and attributes into an object type, which state can be accessed or modified through

interface provided by the encapsulation. Basically each object operation or attribute,

20

which are visible through this interface can be modified by other objects. (Meilir, 1999:

9-12)

Information / implementation hiding is the use of encapsulation to restrict the

external visibility of certain information or implementation decisions that are internal to

the encapsulation structure. This means that an external observer of an object can have

full knowledge of what the object can do, but no knowledge of how the object will do it,

or how it is constructed internally. Encapsulated unit, an object can be basically viewed

from two directions, from outside and from inside. The outside view is called public and

the inside view is called private view. Implementing some object attributes or

functionality as private can be called information / implementation hiding. (Meilir 1999:

12-13.)

Information / implementation hiding has two major benefits. It localizes the design

decisions, which means, that local implementation changes will have minimal impact on

the whole system. It also decouples the local information from its representation form,

which prevents external users becoming tied to any internal information format. (Meilir

1999: 14.)

State Retention in object oriented programming refers to the matter, that objects are

able to remember their internal state. When a traditional procedural module (function,

subprogram, etc.) returns to its caller the module dies, leaving only its results as its

legacy. When the module is called again, it has no memory of its previous existence, so

it acts same as it would be called the first time. But an object is aware of its past. For

example a caller of an object may pass some information to the object, which can be

retrieved later. Technically this means, that object can retain its state. (Meilir 1999: 14.)

Object Identity in object oriented programming can be described as a property by

which each object can be identified and thus treated as a distinct software entity. There

is a unique handle attached to each object in the creation phase by an object-handle

mechanism. This handle remains with the object for its entire lifetime. Two objects can

21

never have the same handle and therefore can be always told apart. (Meilir 1999: 15-

19.)

Messages are transactions, where an object requests another object to carry out activity.

This means, that a sender object gives a target object demand to apply one of its

methods. In order for sender object to send a message to the target object, it must know

three things; handle of target object, name of the operation it wishes to execute and the

arguments required in the execution of this operation. (Meilir 1999: 19.) Sending a

message is usually referred as a method call.

Like subroutines, most messages pass arguments back and forth. The structure of the

message to the target object is defined by a signature of the target operation or in other

words by target objects method description. The method description consists of the

operation name, list of input arguments and list of output arguments. In pure object

oriented environment these arguments are not data, but object handles. (Meilir 1999:

21.)

Classes are needed to be able to describe an object containing some functionality or

information. Basically class can be described as a model or a stencil for creating certain

kind of objects. For example if an class called Engine is examined. Every time we

execute new-statement, a new instance of a class Engine, an Engine-object is born. Each

instantiated object are structurally identical to every other object created by the

statement new Engine. This means that all the Engine-objects contain same operations

and variables as the others. When these objects were programmed, the class Engine was

written. (Meilir 1999: 27.)

There are two differences between objects created with same class: Each have own

identity, meaning, that they contain different handle. Each object can also be in a

different state than the others meaning that object variables can contain different data.

Easy way of distinguishing objects from classes is to remember that classes are the ones

programmed and objects are the ones created at run-time. (Meilir 1999: 28-29.)

22

Each object created contains bunch of attributes and operations, which means, that it

consumes certain amount of memory. Although each object has same set of operations,

called methods, same amount of memory are not allocated every time an object is

created. Since methods contain only procedure code, single set of physical memory can

be shared by all of the objects for storing the methods. Because all of the objects

variables can have different data during run-time, physical memory cannot be shared

same way among the objects for storing the variable data. (Meilir 1999: 29-32.)

Inheritance in object oriented programming is a way to reuse code of existing classes

to create new classes containing slightly similar behavior without duplicating whole

class code. It is a mechanism which can be used to avoid this extra work and also the

maintenance issues that the duplicated code would later produce.

Inheritance can be more easily explained by an example, where two classes A and B

will be examined. If class B is inherited from class A, it means that the objects of class

B can make use of attributes and operations that would otherwise be available only to

the objects of class A. Class A can then be termed a superclass of class B and class B

subclass of A. Inheritance efficiently allows building of software in a way where class

to cope with most general cases are first built, and then to deal with special cases, more

specialized class can be created inheriting the first class. (Meilir 1999: 33.)

Although concepts of object and instance go almost synonymously together, it is

important to distinguish these two from each other. By using inheritance it is possible to

instantiate a single object from multiple classes. Although in most cases subclass

inherits everything that superclass has to offer it is possible to cancel out some of the

superclass operations by overriding them. Inheritance is not necessarily just a relation

between two classes. It is possible for multiple classes to inherit same superclass. In

some programming languages like C# it is also possible for class to have an arbitrary

number of superclasses, which is then called multiple inheritance. (Meilir 1999: 35-38.)

23

The word Polymorphism comes from two Greek words that mean “many” and “form”.

Object oriented textbooks contain two definitions for polymorphism, both valid and

both properties of polymorphism bring a great deal of power to object orientation.

1. “Polymorphism is the facility by which a single operation or attribute name may be

defined upon more than one class and many take on different implementations in each

of those classes.”

2. “Polymorphism is the property whereby an attribute or variable may point to (hold

the handle of) objects of different classes at different times.”

(Meilir 1999: 38.)

Figure 2. Polymorphism Example

24

Diagram in figure 2 presents an example where Canvas utilizes polymorphism by

pointing to IDrawable-object list which contain shapes taking forms of Shape, Map,

Rectangle, Square or Circle. When Canvas is drawn it can draw the list of IDrawable

objects by calling draw-method of IDrawable-object. Although Canvas only points to

list of IDrawable-objects, when the objects are drawn, a form of an object pointed by

the Canvas appears to the screen, whether it is any of these objects in question.

Genericity is a construction of a class so that one or more of the classes that it uses is

supplied at run-time, at the time that an object of class is instantiated (Meilir 1999: 43).

Genericity is one of the most powerful means for obtaining flexibility in object oriented

programming. Generic classes are very useful, when creating generic container-classes

like groups, stacks, lists, trees, networks, etc. (Louhimies, 2000: 60).

C
a

r
P

e
r
s
o

n

Figure 3. Example of Generic Class Usage

Figure 3 represents a stack, which contain objects defined as generic. When stack is

constructed its content is defined by passing the used class to stack as a compile-time

parameter. This enables using of same stack for basically any kind of objects. In the

figure same stack is used for storing Car- and Person-objects. (Louhimies, 2000: 60.)

25

Visibility of Class Members or in other words the accessibility of classes, methods,

and other members can be set by a functionality called access modifiers. Access

modifiers are set by adding prefix keyword to class, attribute or method name. The

functionality of these modifiers might vary little bit between some programming

languages.

C# describes following modifiers; public, internal, protected and private. Public access

is the most permissive access level, which means that public members can be accessed

from anywhere without any restrictions. Protected members in turn are accessible only

from within the class in which those are declared in, and from within any class derived

from the original class declaring those members. Internal members are accessible only

within the same assembly. Private members are accessible only within the class in

which they are declared. In addition to these four types, internal and protected keywords

can be used together. (Microsoft Corporation, 2010)

Figure 4. Different attribute and operation types presented in UML diagram

3.4. More Advanced Features of Object Oriented Programming

This chapter introduces some of the more advanced and powerful functionalities

supported as a built-in feature by more advanced object oriented programming

languages such as Java and C#.

26

Sobel & Friedman (1996) explains the concept of Reflection by reaching back to the

study of self-awareness in artificial intelligence: “Here I am walking down the street in

the rain. Since I'm starting to get drenched, I should open my umbrella.” This conceit

reveals a self-awareness of behavior and state, that leads to a change in both, behavior

and state. Reflection in computer science introduces these same capabilities to computer

programming. Through reflection computer programs can examine themselves in order

to make use of meta-level information in decisions about what to do next.

In computer programming reflection is basically a mechanism which by a programming

can observe and modify its own structure and behavior at runtime (Hurlbutt, 1998). In

object oriented programming languages such as Java and C#, the reflection allows

examination of classes, interfaces, fields and methods at runtime without knowing their

names at compile time. It also allows instantiation of new objects and invocation of

methods. Reflection can also be used to adapt the program to different situations

dynamically. (Oracle Corporation 1995; Microsoft Corporation 2005.)

Serialization in computer programming is a process of converting data structure or

object state into a format that can be stored and resurrected later in the same or another

computer environment. Cline (2011) compares serialization to Transporter on Star Trek:

“it's all about taking something complicated and turning it into a flat sequence of 1s and

0s, then taking that sequence of 1s and 0s (possibly at another place, possibly at another

time) and reconstructing the original complicated something.” Common use case for

serialization is to store the needed data to a file, memory buffer or to transmit it across a

network through a connection link. (Cline 2011.)

As one disadvantage of serialization can be mentioned the issue, that it can require

breaking the opacity of an abstract data type by potentially exposing private

implementation details (Miller 2003). Trivial implementations which serialize all data

members may violate the encapsulation. For this reason some systems using the

serialization to store data, deliberately obfuscate or encrypt the serialized data.

27

There are two types of serialization formats available: text & binary. Which one of these

is better highly depends on the goal that is tried to be achieved (Miller 2003). Both has

advantage and disadvantages as well. For example data serialized to text format is easier

to interpret without any special tools, but that can be seen as disadvantage as well as

advantage.

In the .NET languages, such as C#, classes can be serialized and deserialized by adding

the Serializable-attribute to the class. Also Java provides automatic serialization, which

requires that the serializable classes are marked by implementing the java.io.Serializable

interface.

3.5. Software Design Patterns

A pattern is a way of doing something, a way of aiming towards of achieving a purpose,

a technique. The idea of finding effective techniques of establishing something applies

to many real-world efforts: making food, washing laundry, building house as well as

implementing software. In each craft that have been practiced for a longer period of

time, the people working on it start to find common and more effective methods on

achieving their aims. When these methods in time are being documented, become those

techniques a set of standardized patterns. (Metsker 2004: 1-2.)

In object oriented programming design pattern is a way of pursuing intent by using

classes and their methods. A powerful usage of design patterns in object oriented

programming is usually a good way of achieving the goal with fewer classes and cleaner

code structure. Although there are tens of popular design patterns out there, this chapter

only introduces patterns that contains some significance for understanding this research

or patterns that will be someway applied in the construction of this research.

Interfaces and Abstract Classes are the base components commonly used in many

design patterns. Generally speaking a class’s interface is a collection of methods that the

class allows objects of other classes to access. Interface usually represents a set of

methods that will perform operations implied by their names. These operations are

28

typically described by code comments and other related documentation. Class’s

implementation of an interface lies within its methods, described in the implemented

interface. (Metsker 2004: 9.)

In object oriented programming interfaces provides a way for unrelated objects to

communicate with each other. Programming languages like C# and Java, which this

solution is targeted to, have direct support for interfaces. This means that the interface

description can be completely separated from the actual implementation. These

programming languages also allow several classes to implement same interface or one

class to implement several interfaces (Metsker 2004: 9.) In some older programming

languages, which do not have direct interface support, can still have some features like

pure virtual functions that supports the interface concept.

An abstract class with no non-abstract methods can be used fairly similar way as an

interface; however it contains some differences important to understand: A class can

implement multiple interfaces, but can only be a subclass of one abstract class. All the

methods of an interface are effectively abstract, but an abstract class can have also non-

abstract methods. An interface cannot declare or use variables, but an abstract class can.

Access modifiers are not allowed in interface member declarations and all members of

interface indirectly have automatically public access. An interface cannot declare

constructors, but an abstract class can. (Metsker 2004: 346.)

Adapter Pattern, also known as a wrapper, is a pattern that pursues to convert an

interface of a class to another interface that client expects. Adapter allows two classes to

work together, that otherwise couldn’t, because of incompatibility issues. Adapter

pattern can be useful if some toolkit class that’s designed for reuse can’t be reused

because its interface doesn’t match the domain-specific interface that application

requires. (Gamma, Helm, Johnson & Vlissides 1995: 139.)

There are two types of adapter patterns, object adapter pattern and class adapter pattern.

In object adapter pattern presented in figure 5, adapter contains an instance of a class

29

that it wraps. With this pattern adapter makes calls to the instance of wrapped object.

With class adapter pattern, adapter uses multiple polymorphic interfaces to achieve its

goal. The adapter is created by implementing both, the interface that is expected and the

existing interface.

Figure 5. Structure of Object Adapter Pattern

Usage of adapter class is useful; when interface of existing class does not match the one

needed. A reusable class that cooperates with unrelated classes is needed to be created.

There is need to use several existing subclasses, but it is impractical to adapt their

interface by implementing every one. (Gamma et al. 1995: 140.)

Frameworks use abstract classes to maintain relationships between objects. A software

framework is often responsible of creating objects as well. Sometimes a framework

class responsible of creating object might be implemented as abstract class. When both

of these classes are abstract, clients using the framework have to subclass them to

realize their application-specific implementations. In this case the creator class can’t

predict what kind of subclass to instantiate; it only knows when it should be

instantiated. This creates a dilemma: the framework class must instantiate classes, but it

only knows abstract classes, which cannot be instantiated. (Gamma et al. 1995: 107-

108.)

30

The Factory Method Pattern offers solutions for this dilemma. It encapsulates

knowledge of which subclass to create and moves knowledge out of the framework.

Application subclasses redefine abstract method on creator class to return appropriate

subclasses. This method can be called a factory method, since it is responsible for

manufacturing required object. (Gamma et al. 1995: 107-108.)

Figure 6. Structure of Factory Method Pattern

The usage of factory method pattern is needed, when a class can’t anticipate the class of

objects it must create or it wants its subclasses to specify the objects it creates (Gamma

et al. 1995: 108). These are the main reasons, why this pattern is important to this

research and crucial to understand when creating a design that should be implemented

as an external software component.

Since the main focus of the research construction is to store and restore data, review of

software pattern created for this purpose is required. One of the best patterns suitable for

this task is a behavioral pattern called the Memento Pattern.

Design patterns that do not just describe model of objects or classes, but also the

patterns of communication between them, can be called behavioral patterns. Behavioral

patterns are concerned with algorithms and the responsibility assignment between

objects. These patterns define complex control flow that can be difficult to follow at

run-time. (Gamma et al. 1995: 221.)

31

When implementing undo mechanism or checkpoints to software it is sometimes

necessary to record the internal state of an object. State information has to be stored

somewhere so that it can be later used to restore objects back to their original state.

Objects however usually encapsulate some of their internal state making it impossible to

save this information externally. Exposing this state however would violate

encapsulation, which can compromise the applications reliability and extensibility.

(Gamma et al. 1995: 285.)

These problems can be overcome by applying memento pattern to the design. The

memento pattern is implemented with two objects: an Originator and a Caretaker. The

Originator is some object that has an internal state. The Caretaker in turn is an object

that uses the Originator for some purpose and needs to be able to store its state. For

example to be able to make a checkpoint from originators state, the Caretaker can ask

the Originator for a memento object. To roll back to the state, it can return the memento

object back to the Originator. The memento object itself is an opaque object which the

caretaker cannot and should not change. (Gamma et al. 1995: 283-291.)

Figure 7. Structure of Memento Pattern

Implementing memento pattern places some special challenges, since implementing

Memento-object needs support from programming language used. Memento has two

interfaces: a wide one for the Originator and narrow one for other objects. Ideal

implementation language will be able to support two levels of static protection, which is

32

not automatically supported in all object oriented programming languages. (Gamma et

al. 1995: 287.)

As mentioned in the earlier, frameworks often use the factory method to be able to

instantiate classes that can have application-specific implementation. However this

functionality is inadequate, when there is sometimes need to create families of related or

dependent objects without specifying their concrete classes. This design problem can be

solved by using the Abstract Factory Pattern. (Gamma et al. 1995: 87.)

Figure 8. Structure of Abstract Factory Pattern

This pattern provides a way to encapsulate a group of individual factories that have a

common theme. The client using factories does not know which concrete objects it gets

from each of these factories, since it uses only the generic interfaces of their products.

This pattern separates the details of implementation of a set of objects from their general

usage. Figure 8 presents a base structure of the abstract factory pattern, with two

33

factories containing two factory methods. Number of factory classes and factory

methods used in the design may vary depending on the application details.

Common way to create abstract factory pattern is to use factory method to create factory

methods for each product and to create factory classes as singleton, since multiple

factories for same product types is not usually needed (Gamma et al. 1995: 90).

Inversion of Control (IoC) is a object oriented programming practice, where the object

coupling is bound at the runtime and is typically not knowable at compile time. In

traditional programming, the flow of the application logic is determined by objects that

are statically assigned to each other, whereas with the IoC, object interactions are being

defined through abstractions. In order to be able to bind these objects to one another, the

objects must own compatible abstractions. (Fowler 2005).

Implementation techniques depend on the programming language used. For example in

Java IoC can be implemented through six different techniques: a factory pattern, a

service locator pattern, a constructor injection, a setter injection, an interface injection

or through a contextualized lookup. (Fowler 2005; Hammant 2006).

Inversion of Control is not a new term in computer science. The etymology of the

phrase first came to light in the 1988, in the article by Ralph Johnson and Brian Foote:

One important characteristic of a framework is that the methods defined by the
user to tailor the framework will often be called from within the framework itself,
rather than from the user's application code. The framework often plays the role of
the main program in coordinating and sequencing application activity. This
inversion of control gives frameworks the power to serve as extensible skeletons.
The methods supplied by the user tailor the generic algorithms defined in the
framework for a particular application. (Johnson & Foote 1988.)

Inversion of Control is one of the key parts, which separates software libraries from

software frameworks. A library usually contains a set of functions that can be called

from outside of the library. Framework in turn contains some abstract design with more

built-in behavior. In order to use this behavior user needs to insert own behavior into

34

framework by subclassing or plugging in own classes. The frameworks code then calls

user code at these points. (Fowler 2005; Gamma et al. 1995: 26-27.)

The binding process in the IoC is in most cases achieved through Dependency Injection

pattern. The basic idea of the Dependency Injection is to have a separate object, an

assembler that populates a software component the dependencies it needs to be able to

do its work. The injector decides what concrete classes satisfy the requirements of the

dependent object, and provides them to the dependent. Figure 9 describes an example

where a MovieFinder-object is provided to MovieListener-object by an Assembler to

fulfill its dependency to IMovieFinder-interface. (Fowler 2005.)

Figure 9. The Dependencies for a Dependency Injector

3.6. Graphical User Interface Programming

Most PC applications today allow real time user interaction achieved by graphical user

interfaces, this way improving the usability of an application. User interfaces provide

convenient access to software systems data or services, and therefore allow users to

produce results quickly by learning the usage of the application.

The challenge in specifying architecture for such applications is managing to keep the

functional core independent from the user interface. Functional core of the system is

usually based on the functional specification and remains stable, while user interface in

35

turn are often subject of change and adaptation. Many systems might have to support

multiple customer specific “look and feel” scenarios or user interface have to be

adjusted to fit into customers business processes. This requires usage of user interface

architectures that supports the adaptation of user interface parts without causing major

effects on application functionality or underlying data model. (Buschmann, et al. 2001:

123.)

This chapter represents more closely three patterns most commonly used at the case

organization projects: Model-View-Controller, Model-View-Presenter and Model-

View-ViewModel patterns.

View

Controller

Model

Figure 10. Structure of Model-View-Controller Pattern

In the Model-View-Controller (MVC) architectural pattern interactive application is

divided into three components. Data and core functionality is included in the Model.

Controller handles the user input and the view displays the information to the user.

View and controller together create the user interface. The consistency between the user

interface and the model is ensured by a change-propagation mechanism. (Buschmann, et

al. 2001: 125.)

36

Model component contains the functional core of the application. It encapsulates the

data and export procedures that perform application-specific processing. The procedures

are called by the controllers on behalf of the user. The model also exports functions for

view components to be able to acquire the data to be displayed. The change-propagation

mechanism maintains the relations of dependent components within the model. All

application views and some of the controllers, if needed, register their need to be

informed about changes. Changes to the model state trigger the change-propagation

mechanism, which is basically just a link between the model and the views and

controllers. (Buschmann, et al. 2001: 126.)

View components present information to the user. Different views can present the

information of the model in different ways. Each view defines an update mechanism,

which can be called by the change-propagation mechanism. When this mechanism is

called, view retrieves current data from the model and displays it on the screen. During

the initialization views are associated with the model and each view creates a suitable

controller for itself. Views offer functionality to controllers that will allow them to

manipulate the screen, without having to affect the model. This can be useful for user

triggered operations, such as scrolling. (Buschmann, et al. 2001: 127.)

Controller components accept user inputs as events. How these events are transferred

to the controller depends on the used user interface platform. Events are then translated

into requests for the model or the joined view. The behavior of the controller can be

dependent on the state of the model. It can be necessary, when change of the model

enables or disables for example a menu entry in the view. This interaction can be

achieved by registering the controller to the change-propagation mechanism, which

triggers the update procedure, when needed. (Buschmann, et al. 2001: 127.)

Model-View-Presenter (MVP) pattern is a variant of Model-View-Controller (MVC)

pattern also used for building graphical user interfaces. In the MVP pattern the

controller is replaced by a presenter. MVP is a design pattern developed to improve

37

automated unit testing and to help separation of the application logic from the user

interface layer (Boodhoo 2006).

In MVP pattern, the model is an interface defining the data to be displayed. The view

manages the controls in the user interface; it displays the data and forwards user events

to the presenter. The presenter contains logic for responding to the user events and it

basically acts as a middleman upon the model and the view. The presenter retrieves data

from the model, manipulates it and formats it to be displayed in the view. (Microsoft

Corporation 2010.)

There are two different approaches to implementing the MVP pattern, Passive View and

Supervising Controller illustrated in figure 11. In Passive View, the view is updated

exclusively by the presenter to reflect changes to the model. The view itself is not aware

of changes in the model. In Supervising Controller, the view can interact directly with

the model through a simple data-binding that can be defined without presenter

intervention. The presenter updates the model and it manipulates the state of the view

only in cases where more complex UI logic is required. (Microsoft Corporation 2010.)

Figure 11. Passive View and Supervising Controller (Microsoft Corporation 2010.)

38

The Model-View-ViewModel (MVVM) is an architectural GUI design pattern

originated by Microsoft. Pattern is targeted at modern GUI development platforms

which support event-driven programming. MVVM was introduced as a standardized

way to leverage core features of Windows Presentation Foundation to simplify the

creation of user interfaces. (Smith 2009.)

View

ViewModel

Model

DataBinding
INotifyProperty

Changed Commands

Figure 12. Structure of Model-View-ViewModel Pattern

Although MVVM is partly based on MVC pattern, a viewmodel does not need a

reference to the view. Properties of the view are binded to the viewmodel, which in turn

exposes data from the model objects and other state specific information to the view.

The bindings between view and viewmodel are created by setting the viewmodel object

as the datacontext of the view. View data is automatically updated via these data

bindings if values in the viewmodel change. When user clicks a button in the view, a

viewmodel command executes to perform the requested action. The viewmodel always

performs all the modifications made to the model data. The view and viewmodel classes

are completely unaware of each other, which makes this a highly loosely coupled design

model. (Smith 2009.)

39

4. DEVELOPING THE SOLUTION

This chapter introduces step by step building of the solution and explains the design

methods used. Also convenience of chosen techniques will be discussed.

4.1. Identifying the Solution Requirements

To be able to produce a useful construction for solving the design problem it is

important to understand all the needs set by different design approaches. In this chapter

the research problem will be presented step by step in smaller entities. Requirement

identification is done in three steps. At first application tiers are studied in general level

to recognize the actual data needed to be stored. Next different user interface types are

compared to find most crucial needs for each interface type to be able to build

commonly suitable solution. Finally additional requirements set by usage of different

application architectures are identified.

Most of the applications created at target organization are using Multi-Tier

Architecture model. This kind of software architecture is used to create more flexibility

and reusability to developed application. By dividing an application into tiers,

developers only have to modify or add a specific tier to overcome some challenge,

rather than have to rewrite the entire application. To simplify the examination of the

research problem it was chosen to study it from view of one of the most commonly used

multi-tier models; the three tier model.

The Three-Tier Architecture model, which segments an application's components into

three tiers of services, is commonly used as a fundamental framework for the logical

design model for computer software systems. These tiers do not necessarily correspond

to physical locations on various computers or devices on a network, but rather to logical

layers of the application. How the parts of the system are distributed in a physical

topology can change, depending on the system requirements. Although the concepts of

layer and tier are often used interchangeably, a common point of view is that a layer is a

40

logical structure for an element of software solution, while a tier is a physical structure

of the system. (Microsoft Corporation 2012.)

Figure 13. Example Implementation of Three Tier Architecture

As the figure 13 presents applications usually have three tiers; presentation tier, the user

interface itself, data tier containing the data presented in the user interface and logic tier

binding these two together.

In industrial device control the data tier can be the machine or device itself. It is also

common, that there is some data storage in the data tier, where the configuration values

set to the device will be stored. This data storage is normally a database or set of files

stored to computers file system.

41

Our research mainly focuses on the logical tier, since it usually holds the state set

through the user interface to interfere with the data tier. In this context the state

represents communication settings set to open the communication link to the device. In

the two projects studied for this research these communication links used are serial-,

CAN-, and Ethernet-connections. State can also represent the parameters used to make

database connection or reference to the configuration data set to user interface by user

during the configuration process. This observation presents a requirement for the

construction:

Requirement 1: Solution needs to be able to retrieve and restore the state to the logic

tier of the application.

By studying different desktop application project developed in the target organization it

was noticed that there is at least three different User Interface Types, that needs to be

supported by the solution: single document interface (SDI), multiple document interface

(MDI) and tabbed document interface (TDI). Some projects also contained

combinations of these types.

In a single document interfaces each application window is usually represented as an

individual entry in the operating system's task bar or manager. Each window also

contains its own menu or toolbar, whereas in the multiple document interface model

multiple nested child windows are embedded in a single parent window containing the

menu or toolbar. In the tabbed document interface multiple documents are contained in

a single window, using tabs as a navigation method for switching between the

documents. In TDI usually only one documents is shown at once. TDI is a commonly

used in web browsers, although nowadays many browsers combine TDI with SDI.

42

Figure 14. Firefox Web Browser Utilizing SDI & TDI

Since the constructed solution needs to be adaptable to most of the GUI projects using

these different types of document interfaces it presents a new requirement for the

solution:

Requirement 2: Solution needs to be able to store and restore state of interface

controls, regardless of document interface type used.

In some cases applications are extended to use multiple document interface types at

once. Figure 14 demonstrates a situation, where TDI in embedded to SDI. Each of the

individual windows contains their own settings, like position, size and information

about opened tabs, whereas each of the tabs contains its own settings. This basically

means that there can be undefined amount workspaces nested to each other. This places

a new requirement for the solution:

Requirement 3: Solution needs to support tree structure of workspaces.

It was also noticed that dependency injection pattern was chosen to be used in most of

the new GUI application projects developed in the target organization. However the

43

dependency injection framework used, varied depending on the application architecture.

Some of the applications even used some kind of composition layer to achieve plug-in-

like architecture. This means that usage of software components providing dependency

injection or plugability to the software architecture should be allowed with the solution.

This presented a new challenging requirement for the solution:

Requirement 4: Solution should not prevent developer from using inversion of control.

4.2. Designing Basic Structure for the Solution

During this chapter creating a design based on the requirements identified in previous

chapter will be discussed. By applying software design patterns explained in previous

chapters an UML-model containing mandatory elements for the solution will be

designed.

Figure 15. TDI Application Example

Building the design was started by examining a simple tabbed document interface

application. Figure 15 presents an application called TDIApplication containing a tab

control component TabControl with two user controls SomeControl1 and SomeControl2

inside it. Both user controls are inherited from abstract base class ControlBase. It is

44

quite common, that the tab control and base class for the control are provided by some

third party software framework, for e.g. .NET Framework.

In this example a new user control is brought into view by instantiating a user control

class and passing object to tab control, which then draws a new tab to user interface.

The user workspace in this application is basically the tab control containing created

user controls inside its tabs. State of the user workspace would be stored inside created

user controls as a private attribute, demonstrated by _state-objects in the figure.

Since the third party GUI components cannot be usually modified, first step of

constructing the design was defining basic structure for the storable workspace beside

the GUI framework as presented in the figure 16. A Workspace-class was created to

hold together the workspace-concept. An interface IWorkspaceObject was created to

determine which user classes belong to the workspace. By inheriting

IWorkspaceObject-interface programmer can then define which classes belong to the

workspace.

Figure 16. TDI Application Example with a Storable Workspace

45

Memento pattern were applied in IWorkspaceObject-interface to define a way to get an

object containing controls internal state from the user controls. Memento was only

defined as an interface passing the responsibility of implementing suitable memento

classes to the programmer.

Factory method was applied in Workspace-class method CreateWorkspaceObject-

method, which was defined for creating user controls by passing control type into the

method. Since the returned object is IWorkspaceObject-type, the user is responsible of

casting the object to suitable type for the tab control. However this kind of design also

provides a possibility to store, not only user controls, but also any kind of other objects

as workspace objects. Reference to workspace objects created through this method will

be gathered inside the workspace providing a way of getting and setting the internal

states of all workspace objects inside workspace.

Design provides a way of creating a workspace with multiple workspace objects, e.g.

user controls inside it. Workspace internal state from all workspace objects can be

retrieved and restored by the workspace by using the memento objects. So at this point

the design satisfies requirements 1 and 2, but not 3 and 4.

To satisfy requirement 3, support for creating workspaces inside workspace was added.

Also a WorkspaceManager-class was added to design at this point to act as main

interface for creating, saving and opening workspaces. The solution API was

deliberately designed so that it requires the programmer to use WorkspaceManager to

create a root Workspace-object which could be later used for creating nested

Workspaces to root object and so on.

46

Figure 17. TDI Application Example with Storable Workspace Tree

Solution presented in figure 17 defines a basic structure for the solution and provides a

design that can be used to answer the first research question: “How to design a solution

for saving user workspace of a desktop application?” Methods for saving and opening a

workspace from file were added to WorkspaceManager-class, although at this point it is

still not defined how to retrieve the workspace object data encapsulated by the memento

objects and store it to the computer file system. Another issue is that the solution

structure is also currently tightly binded into the example application. Overcoming these

design issues will be discussed in the upcoming chapters.

47

4.3. Building the Solution as an External Software Component

To answer the second research question: “How to build the solution as a reusable

software component?” requires inevitable some modifications to the solution. As

presented in figure 18, at this point the application parts were divided into three

different areas according to its use; GUIFramework containing parts that would be

adapted from some third party GUI framework, UserApplication containing parts

implemented for the user application and WorkspaceFramework containing parts that

belong to the workspace framework implementation.

Figure 18. TDI Application Utilizing Workspace Framework

48

After reordering the classes Workspace become unaware of the user classes

implementing IWorkspaceObject-interface and therefore cannot anymore directly

instantiate those classes. This problem was solved by utilizing the adapter factory

pattern by adding to the design an IWorkspaceObjectFactory-interface for creating

objects inheriting IWorkspaceObject.

By forcing framework user to create factory for each framework object, also

requirement 4 was solved. With this design implementing dependency injection is

possible through the workspace object factories. Also an IWorkspaceFactory was added

for user to be able to create own workspaces in addition to the default workspace

provided by the framework. By creating own class inheriting IWorkspaceFactory, user

is able to store also the workspaces internal state in addition to workspace objects states.

In order to use framework it is now required to pass list of IWorkspaceObjectFactory

implementations and optionally the IWorkspaceFactory implementation when

WorkspaceManager is created as presented in the C# code example below.

4.4. Storing the User Data

After designing the base structure of the solution it was required to find a way for

storing the user data wrapped in the memento objects inherited from the

IWorkspaceMemento-interface. Although all the mementos can be gathered by the

Workspace-object, it is still unable to access the actual data wrapped inside mementos,

because of their encapsulation.

A mechanism chosen to resolve this problem was serialization. By implementing

memento-objects as serializable it is possible to store the object to computers file

IWorkspaceFactory WSFactory = new WorkspaceFactory();

IEnumerable<IWorkspaceObjectFactory> WSOFactories =

 new List<IWorkspaceObjectFactory>()

 {

 new UserControl1Factory(),

 new UserControl2Factory()

 };

WorkspaceManager WSManager =
 new WorkspaceManager(WSFactory, WSOFactories);

49

system and restore it later to same state. It is bit controversial to break the mementos

encapsulation this way, but considering the purpose of this framework it can be

considered legitimate.

The binary serialization was chosen to be used for the serialization mechanism, because

it provides type fidelity. This means, that it will save the entire object state, not just

some of the object's data. When binary serialization is used to persist an object,

deserializing it will give an exact copy of the object. This is vital for the framework,

because it is implemented apart from the user application and is not aware of object

types used in the user application. Framework also needs to be able to restore stored

user data, even if the user application has changed. Changing application radically will

most likely prevent framework from restoring some of the data, but it should still be

able to restore everything, that is still restorable.

Having compiler to force classes implementing IWorkspaceMemento to serializable in

C# is not possible, which sets a new design rule for framework user: All classes

implementing IWorkspaceMemento need to be serializable. By passing responsibility of

following this implementation rule to user leaves always some possibility for error to

the implementation, which is not usually desired. To ensure that IWorkspaceMementos

are implemented correctly, e.g. unit tests using reflection can be generated for ensuring

that all application classes inheriting IWorkspaceMemento are serializable.

Figure 19. Serialization Wrappers of Workspace Framework

50

Maintaining the workspace object-structure during the serialization phase also set an

additional challenge for storing the data. Since the mementos are inside nonserializable

objects inherited from Workspace or IWorkspaceObject, it is impossible to store the

whole workspace structure to the file system. Figure 19 presents a set of serializable

wrapper-objects, containing same objects structure as the actual workspace. These

wrappers were created as frameworks internal implementation to maintain the objects-

structure, when data is stored.

By interpreting the wrapper-structure and using the object factories provided by the user

application, framework is able to recreate the whole object-structure, when data is

restored. In addition to the structure, also type of the referred IWorkspaceObject is

required to be stored in WorkspaceObjectContainer-objects to be able to restore correct

type of objects, when recreating the workspace. The object type was chosen to be stored

as string, by its assembly qualified name, so that removing some of the stored object

types from implementation does not prevent restoring still existing objects. Trying to

deserialize a Type-object that cannot be resolved causes the serializer to throw an

exception.

Following code describes the implementation of WorkspaceObjectWrapper-class in C#.

 [Serializable]

 internal class WorkspaceObjectContainer

 {

 private string _type;

 public WorkspaceObjectContainer(Type type,

 IList<IWorkspaceMemento> mementos)

 {

 _type = type.AssemblyQualifiedName;

 Mementos = mementos;

 }

 public IList<IWorkspaceMemento> Mementos

 {

 get;

 private set;

 }

 public Type ObjectType

 {

 get { return Type.GetType(_type); }

 }

 }

51

4.5. Optimizing Construction for C#

The workspace framework design as explained so far can be adapted with small

adjustments to multiple different programming languages. Since the main focus was to

implement the solution with C# programming language, it was decided to improve the

usability of the design by improving it with help of some more powerful features

existing in C#.

Figure 20. Workspace Framework Optimized for C#

52

C# provides a mechanism for defining declarative tags, called attributes, which can be

placed on certain entities in source code to specify additional information. The

information that attributes contain can be retrieved at run time through reflection. It is

also possible to define custom attributes. These features were exploited in the solution

to be able to remove IWorkspaceMemento-interface from the design completely making

the API of the design more user-friendly. The optimized design of the solution is

presented in figure 20, where also API and internal implementation of the solution is

divided into their own namespaces.

IWorkspaceMemento-interfaces were replaced by introducing two custom attributes:

WorkspaceState and WorkspaceStateHolder. This way user can implement own

memento objects of any kind and mark references to objects with WorkspaceState-

attribute to indicate the framework which objects needs to be stored. Only requirement

is that the memento objects need to be serializable. In case there are some

nonserializable data references inside state objects, a NonSerializable-attribute provided

by the .NET Framework can be used to restrict those from the serialization.

At this phase an additional class WorkspaceObjectStateContainer was also added to the

wrapper-structure to provide one additional level to the workspace structure. This was

done to support design patterns, where workspace object does not have direct reference

to the workspace object state, because there is another object in between these objects.

This is a common phenomenon, when implementing GUI using e.g. MVC, MVP or

MVVM pattern. The WorkspaceStateHolder-attribute was added to mark reference to

this object from the workspace object.

Retrieving and restoring the data fields encapsulated by workspace objects was

implemented inside the framework by using the reflection to find the custom attributes.

Each field was then wrapped into VariableContainer for serialization as described in the

following C# implementation.

53

It was also decided to simplify the workspace object creation by adding a new generic

method to Workspace-class, making it possible for user to create an instance of

IWorkpaceObject without need to manually cast the objects to correct type. Following

code example demonstrates the difference between old and new way of creating

IWorkspaceObject-objects.

/// <summary>

/// Get all fields from object containing attribute TAttribute

/// </summary>

/// <typeparam name="TAttribute">Type of the attribute</typeparam>

/// <param name="obj">Object to search from</param>

/// <returns>List of fields and values</returns>

private static IList<VariableContainer>

GetFieldValuesWithAttribute<TAttribute>(object obj)

{

 List<VariableContainer> values = new List<VariableContainer>();

 var allInfos = obj.GetType().GetFields(BindingFlags.Instance

 | BindingFlags.NonPublic | BindingFlags.Public);

 foreach (var info in allInfos)

 {

 var attributes = info.GetCustomAttributes(false);

 if (attributes.SingleOrDefault(x => x.GetType()

 == typeof(TAttribute)) == null)

 continue;

 values.Add(new VariableContainer(info.Name,

 info.GetValue(obj), info.FieldType));

 }

 return values;

}

// Using new method

UserControl1 UserControl1 = _workspace.CreateWorkspaceObject<UserControl1>();

// Using old method

UserControl1 UserControl1 =
 (UserControl1)_workspace.CreateWorkspaceObject(typeof(UserControl1));

54

5. EVALUATING PRACTICAL RELEVANCE OF THE DESIGN

To be able to evaluate the actual practical relevance of the design it was necessary to

test it in practice. First the framework was tested by the author by implementing sample

application using different GUI programming approaches. Second test were performed

by software designers working in the case organization. Designers deployed the

implemented software framework into their own applications and filled a user

questionnaire to grade its functionality and usefulness. This chapter presents the results

of these evaluation methods.

5.1. Testing Design by applying it to Different GUI Design Models

It is not recommended, but still quite common to implement a GUI application without

using any specific GUI design pattern. This is why an application implemented without

design pattern was used as a reference in first test case.

In this test case a simple application containing one user interface was created. Also the

optional feature of creating own custom workspace was tested by implementing

IWorkspaceFactory. User interface and the custom workspace both contained some

internal state data, which was marked with WorkspaceState-attribute.

Since the original starting point for the design was a TDI application, not using any

particular pattern, it was not surprise that the solution worked fine for application

without using any design pattern. Both, workspace and user interface data could be

stored and restored without any problems. Figure 21 represent a situation where

workspace API is utilized by simple test application.

55

Figure 21. Example of Workspace Framework Usage without Design Pattern

Second test were performed to application using MVVM design pattern. In this test

case similar application to first test case was created, except that the ViewModel for the

view was added to the application. Although WorkspaceStateHolder-attribute was

already presented earlier in this thesis, it was actually at this test phase where it was

noticed that additional attribute is needed to be able to support MVVM pattern. As

presented in figure 22, WorkspaceStateHolder-attribute was used to address the

framework where ViewModel containing state data can be found.

56

Figure 22. Example of Workspace Framework Usage with MVVM Design Pattern

Following code example presents how ViewFactory implemented to create view and

viewmodel when CreateWorkspaceObject-method is called. It also associates the

viewmodel to the view using constructor injection.

class ViewFactory : IWorkspaceObjectFactory

{

 IWorkspaceObject IWorkspaceObjectFactory.CreateWorkspaceObject()

 {

 return new SomeView(new SomeViewModel());

 }

 IWorkspaceObjectFactory.Type TypeOfWorkspaceObject

 {

 get { return typeof(SomeView); }

 }

}

57

Following code example presents how the view is implemented to expose the

viewmodel to the framework by using WorkspaceStateHolder-attribute.

By utilizing MVVM pattern as presented above, the framework was able to store the

created workspace and restore it back to its previous state.

Since the applications utilizing MVC and MVP design patterns contain three

components containing relations to each other as the MVVM pattern, it is possible to

apply the same design principles as presented in MVVM test case to utilize the

framework functionality. By correct exploitation of WorkspaceStateHolder- and

WorkspaceState-attributes the workspaces data can be stored and restored also in

application using these GUI design patterns.

5.2. Analyzing Results of the User Questionnaire

Although it was originally planned to have larger test group for the framework

evaluation, only three software designers took part in the testing, because it was really

difficult for the designers to find time from their other work within the tight timeframe

of this thesis. Although the test group was relatively small, the questionnaire still gives

some directional information about usefulness of the research outcome.

public partial class SomeView : UserControl, IWorkspaceObject

{

 [WorkspaceStateHolder]

 private SomeViewModel _VM;

 internal SomeView(ExampleViewModel vm)

 {

 this.DataContext = _VM = vm;

 _VM.Workspace = Workspace;

 InitializeComponent();

 }

 #region IWorkspaceObject Members

 public Workspace Workspace { set; private get; }

 #endregion

}

58

Work and educational profile of the interviewees were quite similar; each had Bachelor

of Engineering degree and worked as a software designer within the target organization.

Interviewees work experience varied from three to ten years, but each of the designers

had spent most of their work career developing mainly GUI applications. However one

of the designers specified, that his experience were only focused to graphical web-

applications.

As preliminary questions the interviewees were asked about their previous needs for

similar workspace storage solution. Two of the designers answered that they have had

need for the solution and even implemented a similar solution before. However another

of the designers defined, that his solution was not implemented in a reusable way. Only

the web-application designer had not had any need for this kind of solution before.

When designers were asked about their most commonly used design pattern, MVC were

found as the most commonly used pattern within this group of designers. The most

experienced designer in the group gave quite interesting answer to this question: “MVC,

Magic pushbutton, Big ball of mud.” (Designer 2.) With this answer he was most likely

referring to the fact that there are still quite many application projects implemented

without any proper architectural design and by utilizing anti-patterns.

After testing the solution, designers were questioned about the framework usage.

Directly it was noticed, that none of the designers used any actual GUI design pattern in

their test solution, which unfortunately means that this questionnaire does not provide

any actual data about framework suitability to different GUI design patterns.

As implementation technique designers used two different .NET Framework APIs,

WinForms and Windows Presentation Foundation (WPF). Two of the designers

implemented MDI-application and one SDI-application.

Designers were able to deploy the framework without any bigger problems. However

each of the designers agreed that most challenging part was setting it up for the first

time. After getting the hang of the framework, using it got easier. One designer also

59

pointed out, that better examples would be needed for larger distribution of solution,

when asked about easiness of framework usage.

“At first it was a bit challenging to grasp the concept, but after I started implementing

functionality in the framework it became clearer how it worked. The example

application did also make it easier, even if I didn’t use the same GUI framework”

(Designer 1.)

“Yes, when I got hang of it. Simpler code examples & tutorials would be must if this is

taken into wider distribution.” (Designer 2.)

The main functionality of the framework, storing and restoring application workspaces

was proven to be working by each designer. Only one of the designers reported, that he

had to change his application architecture to get the framework working.

“Had to move program logic out of UI layer, but that stuff shouldn’t even be there if

done properly (Magic pushbutton)” (Designer 2.)

However, making this change can be actually interpreted as a change towards better

application architecture. Also one other designer mentioned that using framework

guided him to tier the user interface layers better.

”In order to use framework it’s better to separate GUI components to logical pieces,

e.g. views. This helps to handle those components which will be included in the

workspace. Using framework will actually help developer to build correct architectural

GUI design.” (Designer 3.)

As an additional benefits gained by of using the framework designers mentioned the

ease of storing the application data and the fact that the framework did not require

wrapping all the data together for storing.

”Saves the trouble of doing more manual serialization.” (Designer 2.)

”There’s no need to implement separate classes or settings to store user data since

framework can also handle user data, e.g. text in text box.” (Designer 3.)

60

None of the designers found any disadvantages from using the framework in their

application. However one of the designers noted that his test application was not

necessarily large enough to even find any real advantages from using the framework.

“Maybe app was bit too small to have any real advantage from this FW. Larger app

next time” (Designer 2.)

As a result of this questionnaire, it can be said that the concept was proven working.

Since the applications which the designers used to test the framework were relatively

small, it can be suspected, that none of the testers really exploited the full potential of

the framework to handle large workspace structures. To determine the real effectiveness

of the framework it needs to be taken into use in larger application projects developed

for real-world purposes. At least one of the designers who participated in testing had

intentions to start using the framework in upcoming projects.

“While developing GUI applications there’s usually always demand for saving the user

workspace. Therefore this framework will provide huge help for upcoming projects

while it saves lots of working hours by providing generic working solution for

workspaces. In addition it will guide the architectural design of the application’s GUI

to better direction” (Designer 3.)

Complete list of questions and results of the questionnaire is presented in appendix 1.

61

6. CONCLUSIONS AND FUTURE

The final chapter of this thesis discusses about the work done and includes conclusions

of the research. Also practical and theoretical significance of the work and future

research possibilities are discussed.

In the beginning of the research project there was a need in the case organization for

solving a desktop application programming problem of storing user workspaces. It was

also decided that the problems should be solved in general way in order to utilize the

solution also in similar upcoming software projects.

Solving of the research problem was stated by gathering knowledge about what kind of

solution the company actually needs. At first a literature review was carried out to get

acquainted with basic concepts of object oriented programming and ways of reusable

software programming by studying design patterns and their usage. Also with co-

operation of company employees a field study was performed to gather insights and

implementation details about previous desktop application projects.

During the research phase an initial idea how to develop a solution for overcoming the

design problem started to evolve. At the development phase a base design for the

solution were build through an application example. By testing the solution model

iteratively against different design patterns it eventually formed a software framework

implementation that provided the actual construction of this research.

The design of the software framework provides an answer for two first research

questions. Solution for saving user workspaces of desktop applications can be created

by implementing design containing object structure for workspaces and a base interface

for user controls utilizing memento pattern as explained in figure 17. The solution can

be built as a reusable software component by utilizing abstract factory pattern for

moving the design outside of user application as presented in figure 18.

62

Finally the construction was tested in the case organization and the effects of using it

were evaluated. All of the designers testing the solution were able to utilize it in their

own application easily. Designers also agreed that they gained clear benefits by using

the solution. Some of the designers even noticed that using the solution guided their

GUI architecture to better direction. One of the designers also considered using the

framework in his upcoming projects.

The questionnaire held for software designers provides at least a directional answer for

the third research question. It can be concluded that the solution helped to improve GUI

application development efficiency by shortening the project development time and by

guiding the architectural decisions of the application development to better direction.

It is however important to keep in mind that the constructed framework is no silver

bullet that would solve all the user workspace related issues in every desktop

application project. There can be several difficulties that were not noticed during this

research and therefore cannot be solved directly by using the framework. This is why it

is important that the target company continues iteration and development of the

framework during upcoming software projects were it will be applied.

6.1. Practical Contribution

Construction developed during this research was built as a proprietary software

component for an industrial software subcontractor company based on its project needs.

A software framework was implemented to save development time in upcoming

projects, this way increasing the business profit of the projects. This kind of reusable

component can be also used as a selling point in gaining new software projects.

The constructed framework was adapted as a part of target organizations reusable

software libraries and has been taken into use in at least one desktop application project.

Due to this it can be said, that the construction passed the weak market test of

constructive research approach (Kasanen et al. 1993: 253).

63

6.2. Theoretical Connection

From the academic point of view presenting the theoretical connections and the research

contribution of the construction is an important part of constructive research study. In

this research the construction itself has a notable practical contribution, but it also

makes theoretical contribution and provides knowledge in the field of desktop

application development.

The theoretical background study carried out in this research was not comprehensive

enough to be seen as a new theoretical contribution. It was mainly documented to give

reader sufficient base knowledge to understand why and how the actual construction

was built. However there is very few publication available discussing about the

problematic of handling user workspaces of desktop applications. Therefore the detailed

description of building the construction is an important part of theoretical contribution

of this research. It provides a reference design and an extendable concept how a

software framework can be constructed for similar purposes.

This study also brings some contribution to the theory of constructive research. There

are many articles in which the constructive research approach has been applied to

different topics, through slightly different approaches. Such as the other articles, also

this study brings up some ideas on how to carry through the constructive research

process, in the field of software development.

6.3. Future Research

The constructed framework has so far been adapted to only one software project, but the

future looks promising. Since the framework will be distributed as a part of

organizations common software libraries it will be easily available to be taken into use

in other upcoming software projects. When the framework starts to be more commonly

used it will most probably set new requirements for the framework and new areas of

improvement will be noticed.

64

During the implementation of the framework some improvement ideas were noted, but

not included into design because of the tight timeframe of the research. These

improvement ideas followed by a question, presented in the next paragraphs can provide

some base for possible future research.

The storing of the framework data is done to file system inside the framework, by

passing file paths to framework API. This limits the design only to applications, with

access to file system. Could the initializing of the storage streams be moved outside the

framework enabling it to use same solution also for example in rich internet applications

running in web browser plug-in?

Using serialization to store the workspace data clearly breaks workspace object

encapsulation. Could it be possible to obfuscate or encrypt the storage streams?

How well does the framework adapt to changes in the application structure? Should

some kind of versioning be added to serialized streams, to ensure change tracking and

backwards compatibility?

It is clear that, if this kind of software component becomes widely adapted in many

different types of applications, it will take several years of improvement, before it will

find its final solid form.

65

REFERENCES

Boodhoo, Jean-Paul (2006). MSDN Magazine: Design Patterns: Model View Presenter

[online] [cited 2.4.2012]. Available from Internet:

<URL:http://msdn.microsoft.com/en-us/magazine/cc188690.aspx>

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad & Michael Stal

(2001). Pattern-Oriented Software Architecture : A System of Patterns. West

Sussex: John Wiley & Sons. 467 p. ISBN 0-471-95869-7.

Cline, Marshall (2011). Serialization and Unserialization [online] [cited 8.4.2012].

Available from Internet: <URL:http://www.parashift.com/c++-faq-

lite/serialization.html>

Ecma International (2006). C# Language Specification: 4th edition / June 2006 [online]

[cited 1.4.2012], 2-20. Available from Internet: <URL: http://www.ecma-

international.org/publications/files/ECMA-ST/Ecma-334.pdf>

Fowler, Martin (2004). Inversion of Control Containers and the Dependency Injection

pattern [online] [cited 8.4.2012]. Available from Internet:

<URL:http://martinfowler.com/articles/injection.html>

Fowler, Martin (2005). Inversion of Control [online] [cited 8.4.2012]. Available from

Internet: <URL:http://martinfowler.com/bliki/InversionOfControl.html>

Gamma, Erich, Richard Helm, Ralph Johnson & John Vlissides (1995). Design Patterns

- Elements of Reusable Object-Oriented Software. 21. ed. Boston: Addison-

Wesley. 395 p. ISBN 0-201-63361-2.

Hammant, Paul (2006). IoC Types [online] [cited 8.4.2012]. Available from Internet:

<URL:http://docs.codehaus.org/display/PICO/IoC+Types>

66

Hurlbutt, Matt (1998). A Tutorial on Behavioral Reflection and its Implementation

[online] [cited 7.4.2012]. Available from Internet:

<URL:http://www2.parc.com/csl/groups/sda/projects/reflection96/docs/malenfant/

ref96/ref96.html>

Johnson, Ralph & Brian Foote (1988). Designing Reusable Classes. Journal of Object-

Oriented Programming 1:2, 22-35. Available from Internet:

<URL:http://www.laputan.org/drc/drc.html>

Kasanen, Eero, Kari Lukka & Arto Siitonen (1991). Konstruktiivinen tutkimusote

liiketaloustieteessä. The Finnish Journal of Business Economics 3, 301-329.

Kasanen, Eero, Kari Lukka & Arto Siitonen (1993). The Constructive Approach in

Management Accounting Research. Journal of Management Accounting 5, 243-

264.

Louhimies, Kai (2000). Oliokirja. Jyväskylä: Satku - Kauppakaari. 422 p. ISBN 951-

762-720-3.

Lukka, Kari & Tero-Seppo Tuomela (1998). Testattuja ratkaisuja liikkeenjohdollisiin

ongelmiin: kostruktiivinen tutkimusote. Yritystalous 4, 23-29.

Lukka, Kari (2003). The Constructive Research Approach. In: Case Study Research in

Logistics, 83-101. Ed. Lauri Ojala & Olli-Pekka Hilmola. Turku: Turku School of

Economics and Business Administration. ISBN 951-564-102-0.

Meilir, Page-Jones (1999). Fundamentals of object-oriented design in UML. New York:

Addison-Wesley. 458 p. ISBN 0-201-69946-X.

Metsker, Steven John (2004). Design Patterns in C#. Boston: Addison-Wesley. 456 p.

ISBN 0-321-12697-1.

67

Microsoft Corporation (2005). MSDN Library: Reflection (C# Programming Guide)

[online] [cited 8.4.2012]. Available from Internet:

<URL:http://msdn.microsoft.com/en-us/library/ms173183%28v=vs.80%29.aspx>

Microsoft Corporation (2010). MSDN Library: Access Modifiers [online] [cited

23.3.2012]. Available from Internet: <URL: http://msdn.microsoft.com/en-

us/library/wxh6fsc7.aspx>

Microsoft Corporation (2010). MSDN Library: Model-View-Presenter Pattern [online]

[cited 2.4.2012]. Available from Internet: <URL:http://msdn.microsoft.com/en-

us/library/ff647543.aspx>

Microsoft Corporation (2012). Dev Center - Desktop: Using a Three-Tier Architecture

Model [online] [cited 14.4.2012]. Available from Internet:

<URL:http://msdn.microsoft.com/en-

us/library/windows/desktop/ms685068%28v=vs.85%29.aspx>

Miller, Mark (2003). Safe Serialization Under Mutual Suspicion [online] [cited

8.4.2012]. Available from Internet: <URL:http://erights.org/data/serial/jhu-

paper/intro.html>

Oracle Corporation (1995). The Java Tutorials: The Reflection API [online] [cited

8.4.2012]. Available from Internet:

<URL:http://docs.oracle.com/javase/tutorial/reflect/index.html>

Purdum, Jack (2008). Beginning C# 3.0 : An Introduction to Object Oriented

Programming. Hoboken: Wiley. 554 p. ISBN 978-0-470-26129-3.

Shalloway, Alan & James R. Trott (2004). Design Patterns Explained : A New

Perspective on Object Oriented Design. 2. ed. Boston: Addison-Wesley. 429 p.

ISBN 0-321-24714-0.

68

Smith, Josh (2009). MSDN Magazine: Patterns: WPF Apps With The Model-View-

ViewModel Design Pattern [online] [cited 2.4.2012]. Available from Internet:

<URL:http://msdn.microsoft.com/en-us/magazine/dd419663.aspx>

Sobel, Jonathan & Daniel Friedman (1996). An Introduction to Reflection-Oriented

Programming [online] [cited 8.4.2012]. Available from Internet:

<URL:http://www.cs.indiana.edu/~jsobel/rop.html>

1

User Questionnaire for Software Designers and Results

Profile

What is your job title?

1. Software Designer

2. Coder

3. Software Designer

What is your education?

1. BEng (IT)

2. University of Applied Sciences

3. B.Eng, Information technology, University of Applied Sciences

Years of programming experience?

1. ~4 years

2. 10

3. 6 years

Years of programming experience with GUI applications?

1. ~3 year, web GUIs

2. 10

3. 6 years

Preliminary questions

Have you had need for similar solution before?

1. No.

2. Yes, but in a C++ project.

3. Yes

Have you implemented solution for similar purpose before?

1. No.

2. Quite, but not in re-usable way.

3. Yes

What GUI design patterns do you commonly use in your applications?

1. MVC (using the ASP.NET MVC framework)

2. MVC, Magic pushbutton, Big ball of mud.

3. Tabbed Document Interface (TDI)

APPENDIX 1.

2

Questions about framework usage

Did you have any problems using / deploying the framework?

1. Only at first, before I got to know the framework better.

2. None. It complied and worked fine.

3. At first I did experience some challenges to get framework deployed. However after I

got basic workspace functionality working adding workspace objects to workspace was

piece of cake.

Did you use any GUI design pattern? What?

1. No, not this time.

2. None. Tried to use FW in an “already existing project”.

3. Multiple Document Interface (MDI)

What programming technique did you use?

1. Winforms, as I’m most familiar with it.

2. WPF

3. Forms

What type of user interface did you use?

1. MDI

2. SDI

3. Multiple Document Interface (MDI)

Was the framework easy to use?

1. At first it was a bit challenging to grasp the concept, but after I started implementing

functionality in the framework it became clearer how it worked. The example

application did also make it easier, even if I didn’t use the same GUI framework

2. Yes, when I got hang of it. Simpler code examples & tutorials would be must if this is

taken into wider distribution.

3. Yes, once you get familiar with it.

Were you able to store and restore user workspaces in your application with the
framework?

1. Yes. When I corrected a few errors in my code, it worked like a charm!

2. Yep.

3. Yes

Were you able to use the framework without any major architectural changes to your
application?

1. Yes. If the application is well built with good separation of UI and logic, I don’t see any

major problem of using this framework.

2. Had to move program logic out of UI layer, but that stuff shouldn’t even be there if

done properly (Magic pushbutton)

3. Yes.

3

What kind of effect did the framework have on the architectural design of your
application?

1. Nothing major that is worth mentioning.

2. None, app was simple enough to not have any real architecture. But this FW should be

easy to apply if app is properly tiered.

3. In order to use framework it’s better to separate GUI components to logical pieces, e.g.

views. This helps to handle those components which will be included in the workspace.

Using framework will actually help developer to build correct architectural GUI design.

Did you get any additional benefits by using the framework?

1. Not in the current use.

2. Saves the trouble of doing more manual serialization.

3. There’s no need to implement separate classes or settings to store user data since

framework can also handle user data, e.g. text in text box.

Did you have any disadvantages by using the framework?

1. No, not that I could realize.

2. Maybe app was bit too small to have any real advantage from this FW. Larger app next

time

3. No

Do you have actual need for the framework and are you going to use it in upcoming
projects?

1. Actually it could be useful in at least one project, but I’m not aware of that the user(s)

would actually need it.

2. Not currently.

3. While developing GUI applications there’s usually always demand for saving the user

workspace. Therefore this framework will provide huge help for upcoming projects

while it saves lots of working hours by providing generic working solution for

workspaces. In addition it will guide the architectural design of the application’s GUI to

better direction

	AL_DI_final_cute
	user_questionnaire_cute

