6 research outputs found

    Designing an Interval Type-2 Fuzzy Logic System for Handling Uncertainty Effects in Brain–Computer Interface Classification of Motor Imagery Induced EEG Patterns

    Get PDF
    One of the urgent challenges in the automated analysis and interpretation of electrical brain activity is the effective handling of uncertainties associated with the complexity and variability of brain dynamics, reflected in the nonstationary nature of brain signals such as electroencephalogram (EEG). This poses a severe problem for existing approaches to the classification task within brain–computer interface (BCI) systems. Recently emerged type-2 fuzzy logic (T2FL) methodology has shown a remarkable potential in dealing with uncertain information given limited insight into the nature of the data generating mechanism. The objective of this work is thus to examine the applicability of T2FL approach to the problem of EEG pattern recognition. In particular, the focus is two-fold: i) the design methodology for the interval T2FL system (IT2FLS) that can robustly deal with inter-session as well as within-session manifestations of nonstationary spectral EEG correlates of motor imagery (MI), and ii) the comprehensive examination of the proposed fuzzy classifier in both off-line and on-line EEG classification case studies. The on-line evaluation of the IT2FLS-controlled real-time neurofeedback over multiple recording sessions holds special importance for EEG-based BCI technology. In addition, a retrospective comparative analysis accounting for other popular BCI classifiers such as linear discriminant analysis (LDA), kernel Fisher discriminant (KFD) and support vector machines (SVMs) as well as a conventional type-1 FLS (T1FLS), simulated off-line on the recorded EEGs, has demonstrated the enhanced potential of the proposed IT2FLS approach to robustly handle uncertainty effects in BCI classification

    Estimation of SSVEP-based EEG complexity using inherent fuzzy entropy

    Get PDF
    © 2017 IEEE. This study considers the dynamic changes of complexity feature by fuzzy entropy measurement and repetitive steady-state visual evoked potential (SSVEP) stimulus. Since brain complexity reflects the ability of the brain to adapt to changing situations, we suppose such adaptation is closely related to the habituation, a form of learning in which an organism decreases or increases to respond to a stimulus after repeated presentations. By a wearable electroencephalograph (EEG) with Fpz and Oz electrodes, EEG signals were collected from 20 healthy participants in one resting and five-times 15 Hz SSVEP sessions. Moreover, EEG complexity feature was extracted by multi-scale Inherent Fuzzy Entropy (IFE) algorithm, and relative complexity (RC) was defined the difference between resting and SSVEP. Our results showed the enhanced frontal and occipital RC was accompanied with increased stimulus times. Compared with the 1st SSVEP session, the RC was significantly higher than the 5th SSVEP session at frontal and occipital areas (p < 0.05). It suggested that brain has adapted to changes in stimulus influence, and possibly connected with the habituation. In conclusion, effective evaluation of IFE has a potential EEG signature of complexity in the SSEVP-based experiment

    A Review on the Development of Fuzzy Classifiers with Improved Interpretability and Accuracy Parameters

    Get PDF
    This review paper of fuzzy classifiers with improved interpretability and accuracy param-eter discussed the most fundamental aspect of very effective and powerful tools in form of probabilistic reasoning, The fuzzy logic concept allows the effective realization of ap-proximate, vague, uncertain, dynamic, and more realistic conditions, which is closer to the actual physical world and human thinking. The fuzzy theory has the competency to catch the lack of preciseness of linguistic terms in a speech of natural language. The fuzzy theory provides a more significant competency to model humans like com-mon-sense reasoning and conclusion making to fuzzy set and rules as good membership function. Also, in this paper reviews discussed the evaluation of the fuzzy set, type-1, type-2, and interval type-2 fuzzy system from traditional Boolean crisp set logic along with interpretability and accuracy issues in the fuzzy system

    Effects of repetitive SSVEPs on EEG complexity using multiscale inherent fuzzy entropy

    Full text link
    © 2019 Elsevier B.V. Multiscale inherent fuzzy entropy is an objective measurement of electroencephalography (EEG) complexity, reflecting the habituation of brain systems. Entropy dynamics are generally believed to reflect the ability of the brain to adapt to a visual stimulus environment. In this study, we explored repetitive steady-state visual evoked potential (SSVEP)-based EEG complexity by assessing multiscale inherent fuzzy entropy with relative measurements. We used a wearable EEG device with Oz and Fpz electrodes to collect EEG signals from 40 participants under the following three conditions: a resting state (closed-eyes (CE) and open-eyes (OE) stimulation with five 15-Hz CE SSVEPs and stimulation with five 20-Hz OE SSVEPs. We noted monotonic enhancement of occipital EEG relative complexity with increasing stimulus times in CE and OE conditions. The occipital EEG relative complexity was significantly higher for the fifth SSVEP than for the first SSEVP (FDR-adjusted p < 0.05). Similarly, the prefrontal EEG relative complexity tended to be significantly higher in the OE condition compared to that in the CE condition (FDR-adjusted p < 0.05). The results also indicate that multiscale inherent fuzzy entropy is superior to other competing multiscale-based entropy methods. In conclusion, EEG relative complexity increases with stimulus times, a finding that reflects the strong habituation of brain systems. These results suggest that multiscale inherent fuzzy entropy is an EEG pattern with which brain complexity can be assessed using repetitive SSVEP stimuli

    EEG-Analysis for Cognitive Failure Detection in Driving Using Type-2 Fuzzy Classifiers

    Get PDF
    The paper aims at detecting on-line cognitive failures in driving by decoding the EEG signals acquired during visual alertness, motor-planning and motor-execution phases of the driver. Visual alertness of the driver is detected by classifying the pre-processed EEG signals obtained from his pre-frontal and frontal lobes into two classes: alert and non-alert. Motor-planning performed by the driver using the pre-processed parietal signals is classified into four classes: braking, acceleration, steering control and no operation. Cognitive failures in motor-planning are determined by comparing the classified motor-planning class of the driver with the ground truth class obtained from the co-pilot through a hand-held rotary switch. Lastly, failure in motor execution is detected, when the time-delay between the onset of motor imagination and the EMG response exceeds a predefined duration. The most important aspect of the present research lies in cognitive failure classification during the planning phase. The complexity in subjective plan classification arises due to possible overlap of signal features involved in braking, acceleration and steering control. A specialized interval/general type-2 fuzzy set induced neural classifier is employed to eliminate the uncertainty in classification of motor-planning. Experiments undertaken reveal that the proposed neuro-fuzzy classifier outperforms traditional techniques in presence of external disturbances to the driver. Decoding of visual alertness and motor-execution are performed with kernelized support vector machine classifiers. An analysis reveals that at a driving speed of 64 km/hr, the lead-time is over 600 milliseconds, which offer a safe distance of 10.66 meters
    corecore