3 research outputs found

    Scalable Design and Synthesis of Reversible Circuits

    Get PDF
    The expectations on circuits are rising with their number of applications, and technologies alternative to CMOS are becoming more important day by day. A promising alternative is reversible computation, a computing paradigm with applications in quantum computation, adiabatic circuits, program inversion, etc. An elaborated design flow is not available to reversible circuit design yet. In this work, two directions are considered: Exploiting the conventional design flow and developing a new flow according to the properties of reversible circuits. Which direction should be taken is not obvious, so we discuss the possible assets and drawbacks of taking either direction. We present ideas which can be exploited and outline open challenges which still have to be addressed. Preliminary results obtained by initial implementations illustrate the way to go. By this we present and discuss two promising and complementary directions for the scalable design and synthesis of reversible circuits

    HDL-based Synthesis of Reversible Circuits : A Scalable Design Approach

    Get PDF
    Reversible computing is a promising research field due to its applications in several emerging technologies. Accordingly, several approaches for the design of reversible circuits have been introduced. Hardware Description Languages approach scales better than other methodologies, however, its main drawback is substantial amounts of additional circuit lines. This dissertation is an important step towards an elaborated scalable design flow of reversible circuits. In which, HDL-based design of reversible circuit is optimised, with line-awareness considered as the main objective. A line-aware programming style for a dedicated reversible hardware description language SyReC is proposed. Another contribution is a line-aware computation of HDL expressions. Reversible circuits' synthesis from a conventional hardware description language (VHDL) is examined. Finally, syntactical extensions to the dedicated hardware description language SyReC are suggested
    corecore