1,355 research outputs found

    Optical packet switching over arbitrary physical topologies using the Manhattan street network : an evolutionary approach

    Get PDF
    Published in "Towards an Optical Internet", A. Jukan (Ed.). Optical packet switching over arbitrary physical topologies typically mandates complex routing schemes and the use of buffers to resolve the likely contentions. However, the relatively immature nature of optical logic devices and the limitations with optical buffering provide significant incentive to reduce the routing complexity and avoid optical domain contentions. This paper examines how the Manhattan Street Network (MSN) and a particular routing scheme may be used to facilitate optical packet switching over arbitrary physical topologies. A novel approach, genetic algorithms (GA), is applied to the problem of deploying the MSN (near) optimally in arbitrary physical topologies. A problem encoding is proposed and different implementations of GA described. The optimum GA parameters are empirically selected and GA is successfully used to deploy the MSN in physical topologies of up to 100 nodes. Favourable results are obtained. GA are also seen to out-perform other heuristics at deploying the MSN in arbitrary physical topologies for optical packet switching

    Investigation of the tolerance of wavelength-routed optical networks to traffic load variations.

    Get PDF
    This thesis focuses on the performance of circuit-switched wavelength-routed optical network with unpredictable traffic pattern variations. This characteristic of optical networks is termed traffic forecast tolerance. First, the increasing volume and heterogeneous nature of data and voice traffic is discussed. The challenges in designing robust optical networks to handle unpredictable traffic statistics are described. Other work relating to the same research issues are discussed. A general methodology to quantify the traffic forecast tolerance of optical networks is presented. A traffic model is proposed to simulate dynamic, non-uniform loads, and used to test wavelength-routed optical networks considering numerous network topologies. The number of wavelengths required and the effect of the routing and wavelength allocation algorithm are investigated. A new method of quantifying the network tolerance is proposed, based on the calculation of the increase in the standard deviation of the blocking probabilities with increasing traffic load non-uniformity. The performance of different networks are calculated and compared. The relationship between physical features of the network topology and traffic forecast tolerance is investigated. A large number of randomly connected networks with different sizes were assessed. It is shown that the average lightpath length and the number of wavelengths required for full interconnection of the nodes in static operation both exhibit a strong correlation with the network tolerance, regardless of the degree of load non-uniformity. Finally, the impact of wavelength conversion on network tolerance is investigated. Wavelength conversion significantly increases the robustness of optical networks to unpredictable traffic variations. In particular, two sparse wavelength conversion schemes are compared and discussed: distributed wavelength conversion and localized wavelength conversion. It is found that the distributed wavelength conversion scheme outperforms localized wavelength conversion scheme, both with uniform loading and in terms of the network tolerance. The results described in this thesis can be used for the analysis and design of reliable WDM optical networks that are robust to future traffic demand variations

    Wavelength assignment in all-optical networks for mesh topologies

    Get PDF
    All-Optical Networks employing Dense Wavelength Division Multiplexing (DWDM) are believed to be the next generation networks that can meet the ever-increasing demand for bandwidth of the end users. This thesis presents some new heuristics for wavelength assignment and converter placement in mesh topologies. Our heuristics try to assign the wavelengths in an efficient manner that results in very low blocking probability. We propose novel static and dynamic assignment schemes that outperform the assignments reported in the literature even when converters are used. The proposed on-line scheme called Round-Robin assignment outperforms previously proposed strategies such as first-fit and random assignment schemes. The performance improvement obtained with the proposed static assignments is very significant when compared with the dynamic schemes. We designed and developed a simulator in the C language that supports the 2D mesh topology with DWDM. We ran extensive simulations and compared our heuristics with those reported in the literature. We have examined converter placement in mesh topologies and proposed that placing converters at the center yields better results than uniform placement when dimension order routing is employed. We introduced a new concept called wavelength assignment with second trial that results in extremely low blocking probabilities when compared to schemes based on a single trial. Our proposed schemes are simple to implement and do not add to the cost. Thus we conclude that wavelength assignment plays more significant role in affecting the blocking probability than wavelength converters. We further conclude that static schemes without converters could easily outperform dynamic schemes thus resulting in great savings

    WDM optical network: Efficient techniques for fault-tolerant logic topology design

    Get PDF
    The rapid increase of bandwidth intensive applications has created an unprecedented demand for bandwidth on the Internet. With recent advances in optical technologies, especially the development of wavelength division multiplexing (WDM) techniques, the amount of raw bandwidth available on the fibre links has increased by several orders of magnitude. Due to the large volume of traffic these optical networks carry, there is one very important issue---design of robust networks that can survive faults. Two common mechanisms to protect against the network failure: one is protection and another is restoration. My research focuses on studying the efficient techniques for fault-tolerant logical topology design for the WDM optical network. In my research, the goal is to determine a topology that accommodates the entire traffic flow and provides protection against any single fiber failure. I solve the problem by formulating the logical topology design problem as a MILP optimization problem, which generates the optimum logical topology and the optimum traffic routing scheme. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .S54. Source: Masters Abstracts International, Volume: 43-01, page: 0244. Adviser: Arunita Jaekel. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    Heuristic for the design of fault tolerant logical topology.

    Get PDF
    Wavelength division multiplexing (WDM) in optical fiber networks is widely viewed as the savior for its potential to satisfy the huge bandwidth requirement of network users. Optical cross connect (OCX) in WDM network facilitates the switching of signal on any wavelength from any input port to any output port. As a result, it is possible to establish ligthpaths between any pair of nodes. The set of lightpaths established over fiber links defines logical topology. In our thesis, we proposed a heuristic approach for the design of fault tolerant logical topology. Our design approach generalizes the design protection concept and enforces wavelength continuity constraint in a multi-hop optical network. In our work, we first designed logical topology for fault free state of the network. We, then, added additional lightpaths for each single link failure scenario. Numerical results clearly show that our approach outperforms Shared path protection and Dedicated path protection. Our simulation result shows that our approach is feasible for large networks. (Abstract shortened by UMI.) Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .S24. Source: Masters Abstracts International, Volume: 44-03, page: 1413. Thesis (M.Sc.)--University of Windsor (Canada), 2005
    • 

    corecore