12,153 research outputs found

    Activity-promoting gaming systems in exercise and rehabilitation

    Get PDF
    Commercial activity-promoting gaming systems provide a potentially attractive means to facilitate exercise and rehabilitation. The Nintendo Wii, Sony EyeToy, Dance Dance Revolution, and Xbox Kinect are examples of gaming systems that use the movement of the player to control gameplay. Activity-promoting gaming systems can be used as a tool to increase activity levels in otherwise sedentary gamers and also be an effective tool to aid rehabilitation in clinical settings. Therefore, the aim of this current work is to review the growing area of activity-promoting gaming in the context of exercise, injury, and rehabilitation

    Exergame design for elderly users: the case study of SilverBalance

    Get PDF
    In this paper, we discuss chances and challenges of game design for an elderly audience with a focus on the development of safe and usable exertion games for frail senior citizens. Based on an analysis of theoretical constraints, we conducted a case study which implements different balance tasks for elderly players featuring the Nintendo Wii Balance Board which encourages users to actively engage in game play. Furthermore, we tested the feasibility of the board as input device for our case study SilverBalance. Our results indicate that age-related impairments influence the use of video games among frail elderly in many respects, hence their needs have to be considered during the design process. In this context, our paper provides a foundation for future research regarding digital games for the elderly. © 2010 ACM

    The Use of digital games to enhance the physical exercise activity of the elderly : a case of Finland

    Get PDF
    According to the World Health Organization (WHO), population ageing is a global phenomenon, which brings both challenges and opportunities for society. The current longer expected lifespan can create opportunities for the elderly to contribute in many ways to their families and communities. However, it greatly depends on their quality of life, which is affected by many factors, including physical and functional health, social well-being, and cognitive abilities. The WHO (2012) states that physical health is one of the indicators for the elderly’s quality of life, and it declines with increasing age. Participation in regular physical exercises can help the elderly improve their physical and mental health, and this has been aided by the use of modern technologies to promote the elderly’s physical and functional health. Of these latest technologies, digital games have shown promise to improve and enhance the elderly’s physical activities through fun and engaging gameplay. The literature highlights that some commercial games in the market (e.g. Microsoft Kinect- Sports and Nintendo Wii Sports games) have the potential to improve the elderly’s physical health such as gait, balance, and fall prevention. However, researchers argue that these commercial games are not designed specifically for the elderly and their physical exercise activities. They state that most commercial games are not user-friendly for the elderly whose functional and physical abilities are limited due to their advanced years. The literature points out that more studies need to be undertaken to understand the usability and usefulness of digital games for physical exercise activities so that game designers can create elderly-friendly digital games in the future. In Finland, the government has been focusing on promoting healthy ageing and increasing home care services for the elderly. In recent years, Finnish researchers have used digital games to promote older Finns’ healthy and active ageing. The existing literature, whilst showing the potential of digital games for elderly Finns’ physical health, also acknowledges further research is needed particularly in the context of Finland. Thus, in this study, we aimed at investigating digital games to specifically assess their applications for older Finns’ physical activities, focusing on the quality of users’ experiences, and their reported ease of use and perceived usefulness. We used the mixed methods approach, which applies both qualitative and quantitative research methods. The study design included four stages: requirements gathering, analysis and design, prototyping, and evaluation. Firstly, we conducted pre-studies to elicit users’ requirements. This was followed by the analysis of the resulting data to identify trends and patterns, which fuelled ideas in the brainstorming game design and development phases. The final product was a digital game-based physical exercise called the Skiing Game. We then evaluated the Skiing Game in Finland with 21 elderly Finns (M=7, F=14, Average Age =76). By using questionnaires, observation, and interviews, we investigated user experiences, focusing on the game’s usability, and usefulness for enhancing the physical activity and wellbeing of the elderly. We also conducted a comparative test of the Skiing Game in Japan with 24 elderly Japanese participants (M=12, F=12, Average Age = 72) to further understand non-Finnish elderly users’ experiences. The findings from the usability study of the Skiing Game in Finland demonstrated that elderly Finns had a positive experience in the gameplay, and their motivation was noticeably high. It also confirmed that elderly Finns have a genuine interest in digital game-based exercises and strong intentions to play digital games as a form of physical exercise in the future. Although prior to the study most of them had negative views and misconceptions about digital games, after the gameplay their attitudes were decidedly positive. They acknowledged that whilst playing digital games could be an alternative way of exercising for them their use would primarily be when they don’t have access to their usual non-digital physical exercise. The Japanese usability of the Skiing Game showed that the elderly Japanese people also had positive user experiences in playing digital games, and also intend to use them in the future. Similarly, after playing the game they reported that their attitudes towards digital games become positive, and indicated playing digital games could be an alternative way of exercising. Although the comparison of the two studies suggests that the elderly Finns had relatively more positive experiences whilst playing the Skiing Game, compared to their Japanese counterparts, in general, both groups had a positive experience in the gameplay and showed interest in digital games as an alternative exercise. Based on the usability lessons learned from these two studies, recommendations for practitioners and designers regarding improvements in game design and development are made in this report. Implementing these modifications into future designs and further development of digital games for the elderly will improve their commercial viability and user uptake. The findings from this study can provide valuable insights, particularly for Finnish policymakers and healthcare practitioners who are keen to introduce digital games into the aged-care sector in Finland. The studies have also provided valuable insights into the optimal methods for introducing Finnish digital games to international markets, in particular, digital games tailored specifically for the physical exercise needs and motivations of the elderly. By taking into consideration the limitations of the study, we provide our future studies and further improvements of the game to be conducted

    Home-based physical therapy with an interactive computer vision system

    Full text link
    In this paper, we present ExerciseCheck. ExerciseCheck is an interactive computer vision system that is sufficiently modular to work with different sources of human pose estimates, i.e., estimates from deep or traditional models that interpret RGB or RGB-D camera input. In a pilot study, we first compare the pose estimates produced by four deep models based on RGB input with those of the MS Kinect based on RGB-D data. The results indicate a performance gap that required us to choose the MS Kinect when we tested ExerciseCheck with Parkinson’s disease patients in their homes. ExerciseCheck is capable of customizing exercises, capturing exercise information, evaluating patient performance, providing therapeutic feedback to the patient and the therapist, checking the progress of the user over the course of the physical therapy, and supporting the patient throughout this period. We conclude that ExerciseCheck is a user-friendly computer vision application that can assist patients by providing motivation and guidance to ensure correct execution of the required exercises. Our results also suggest that while there has been considerable progress in the field of pose estimation using deep learning, current deep learning models are not fully ready to replace RGB-D sensors, especially when the exercises involved are complex, and the patient population being accounted for has to be carefully tracked for its “active range of motion.”Published versio

    Technology inspired design for pervasive healthcare

    Get PDF
    Pervasive healthcare technologies are increasingly using novel sensory devices that are able to measure phenomena that could not be measured before. To develop novel healthcare applications that use these largely untested technologies, it is important to have a design process that allows proper exploration of the capabilities of the novel technologies. We focus on the technology-inspired design process that was used in the development of a system to support posture and provide guidance by nudging people, and how this has lead us to explore pervasive healthcare applications

    Universal Balance?

    Get PDF
    In the ActivAbles and STARR projects we are developing interactive training tools for stroke survivors. As our initial user studies pointed to balance being a key ability, one of the developed tools is an interactive balance mat. While balance equipment is common, interactive balancing equipment for persons with poor balance is less common. Equipment exists for persons with good balance (eg. Wii), but most games and exercises are less suited for many stroke survivors. The development process has been done in close collaboration with stroke survivors. We have used both creative workshops and individual iterative testing in the development, and have currently a prototype that is being tested in the home of 12 stroke survivors. This prototype is based on a foam mat which incorporates pressure sensing, and which allows you to see the pressure distribution as you exercise, but also allows you to play music or play different games. The feedback is designed to be inclusive - designs are multimodal (visual and auditory), and the setup is flexible and can easily be adapted. Initial test results show that the overall design is promising and works well (is robust, motivating and used). Problems identified are connected to the fact that we use main stream tablets for feedback, which adds complexity for the user both with interaction and charging. We are currently working on solving these problems, and expect to end up with a balance mat well suited for a wide range of users - not only stroke survivors

    Designing smart garments for rehabilitation

    Get PDF

    Falls prevention advice and visual feedback to those at risk of falling : study protocol for a pilot randomized controlled trial

    Get PDF
    Studies have shown that functional strength and balance exercises can reduce the risk of falling in older people if they are done on a regular basis. However, the repetitive nature of these exercises; combined with the inherent lack of feedback of progress may discourage seniors from exercising in the home, thereby rendering such an intervention ineffective. This study hypothesizes that the use of visual feedback and multimodal games will be more effective in encouraging adherence to home rehabilitation than standard care; thereby promoting independence and improving the quality of life in older adults at risk of falling
    • 

    corecore