2,865 research outputs found

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)

    From Social Simulation to Integrative System Design

    Full text link
    As the recent financial crisis showed, today there is a strong need to gain "ecological perspective" of all relevant interactions in socio-economic-techno-environmental systems. For this, we suggested to set-up a network of Centers for integrative systems design, which shall be able to run all potentially relevant scenarios, identify causality chains, explore feedback and cascading effects for a number of model variants, and determine the reliability of their implications (given the validity of the underlying models). They will be able to detect possible negative side effect of policy decisions, before they occur. The Centers belonging to this network of Integrative Systems Design Centers would be focused on a particular field, but they would be part of an attempt to eventually cover all relevant areas of society and economy and integrate them within a "Living Earth Simulator". The results of all research activities of such Centers would be turned into informative input for political Decision Arenas. For example, Crisis Observatories (for financial instabilities, shortages of resources, environmental change, conflict, spreading of diseases, etc.) would be connected with such Decision Arenas for the purpose of visualization, in order to make complex interdependencies understandable to scientists, decision-makers, and the general public.Comment: 34 pages, Visioneer White Paper, see http://www.visioneer.ethz.c

    New measurement paradigms

    Get PDF
    This collection of New Measurement Paradigms papers represents a snapshot of the variety of measurement methods in use at the time of writing across several projects funded by the National Science Foundation (US) through its REESE and DR K–12 programs. All of the projects are developing and testing intelligent learning environments that seek to carefully measure and promote student learning, and the purpose of this collection of papers is to describe and illustrate the use of several measurement methods employed to achieve this. The papers are deliberately short because they are designed to introduce the methods in use and not to be a textbook chapter on each method. The New Measurement Paradigms collection is designed to serve as a reference point for researchers who are working in projects that are creating e-learning environments in which there is a need to make judgments about students’ levels of knowledge and skills, or for those interested in this but who have not yet delved into these methods

    Agent Oriented Software Engineering (AOSE) Approach to Game Development Methodology

    Get PDF
    This thesis investigates existing game development methodologies, through the process of researching game and system development models. The results indicate that these methodologies are engineered to solve specific problems, and most are suitable only for specific game genres. Different approaches to building games have been proposed in recent years. However, most of these methodologies focus on the design and implementation phase. This research aims to enhance game development methodologies by proposing a novel game development methodology, with the ability to function in generic game genres, thereby guiding game developers and designers from the start of the game development phase to the end of the implementation and testing phase. On a positive note, aligning development practice with universal standards makes it far easier to incorporate extra team members at short notice. This increased the confidence when working in the same environment as super developers. In the gaming industry, most game development proceeds directly from game design to the implementation phase, and the researcher observes that this is the only industry in which this occurs. It is a consequence of the game industry’s failure to integrate with modern development techniques. The ultimate aim of this research to apply a new game development methodology using most game elements to enhance success. This development model will align with different game genres, and resolve the gap between industry and research area, so that game developers can focus on the important business of creating games. The primary aim of Agent Oriented Agile Base (AOAB) game development methodology is to present game development techniques in sequential steps to facilitate game creation and close the gap in the existing game development methodologies. Agent technology is used in complex domains such as e-commerce, health, manufacturing, games, etc. In this thesis we are interested in the game domain, which comprises a unique set of characteristics such as automata, collaboration etc. Our AOAB will be based on a predictive approach after adaptation of MaSE methodology, and an adaptive approach using Agile methodology. To ensure proof of concept, AOAB game development methodology will be evaluated against industry principles, providing an industry case study to create a driving test game, which was the problem motivating this research. Furthermore, we conducted two workshops to introduce our methodology to both academic and industry participants. Finally, we prepared an academic experiment to use AOAB in the academic sector. We have analyzed the feedbacks and comments and concluded the strengths and weakness of the AOAB methodology. The research achievements are summarized and proposals for future work outlined

    Inclusive Intelligent Learning Management System Framework

    Get PDF
    Machado, D. S-M., & Santos, V. (2023). Inclusive Intelligent Learning Management System Framework. International Journal of Automation and Smart Technology, 13(1), [2423]. https://doi.org/10.5875/ausmt.v13i1.2423The article finds context and the current state of the art in a systematic literature review on intelligent systems employing PRISMA Methodology which is complemented with narrative literature review on disabilities, digital accessibility and legal and standards context. The main conclusion from this review was the existing gap between the available knowledge, standards, and law and what is put into practice in higher education institutions in Portugal. Design Science Research Methodology was applied to output an Inclusive Intelligent Learning Management System Framework aiming to help higher education professors to share accessible pedagogic content and deliver on-line and presential classes with a high level of accessibility for students with different types of disabilities, assessing the uploaded content with Web content Accessibility Guidelines 3.0, clustering students according to their profile, conscient feedback and emotional assessment during content consumption, applying predictive models and signaling students at risk of failing classes according to study habits and finally applying a recommender system. The framework was validated by a focus group to which experts in digital accessibility, information systems and a disabled PhD graduate.publishersversionpublishe

    A Review on Intelligent Agent Systems

    Get PDF
    Multi-agent system (MAS) is a common way of exploiting the potential power of agent by combining many agents in one system. Each agent in a multivalent system has incomplete information and is in capable of solving entire problem on its own. Multi-agent system offers modularity. If a problem domain is particularly complex, large and contain uncertainty, then the one way to address, it to develop a number of functional specific and modular agent that are specialized at solving various problems individually. It also consists of heterogeneous agents implemented by different tool and techniques. MAS can be defining as loosely coupled network of problem solvers that interact to solve problems that are beyond the individual capabilities or knowledge of each problem solver. These problem solvers, often ailed agent are autonomous and can be heterogeneous in nature. MAS is followed by characteristics, Future application, What to be change, problem solving agent, tools and techniques used, various architecture, multi agent applications and finally future Direction and conclusion. Various Characteristics are limited viewpoint, effectively, decentralized; computation is asynchronous, use of genetic algorithms. It has some drawbacks which must be change to make MAS more effective. In the session of problem solving of MAS, the agent performance measure contains many factors to improve it like formulation of problems, task allocation, organizations. In planning of multivalent this paper cover self-interested multivalent interactions, modeling of other agents, managing communication, effective allocation of limited resources to multiple agents with managing resources. Using of tool, to make the agent more efficient in task that are often used. The architecture o MAS followed by three layers, explore, wander, avoid obstacles respectively. Further different and task decomposition can yield various architecture like BDI (Belief Desire Intension), RETSINA. Various applications of multi agent system exist today, to solve the real-life problems, new systems are being developed two distinct categories and also many others like process control, telecommunication, air traffic control, transportation systems, commercial management, electronic commerce, entertainment applications, medical applications. The future aspect of MAS to solve problems that are too large, to allow interconnection and interoperation of multiple existing legacy systems etc

    Designing evolving cyber-physical-social systems: computational research opportunities

    Get PDF
    In the context of the theme for this special issue, namely, challenges and opportunities in computing research to enable next generation engineering applications, our intent in writing this paper is to seed the dialog on furthering computing research associated with the design of cyber-physical-social systems. Cyber-Physical-Social Systems (CPSS's) are natural extensions of Cyber-Physical Systems (CPS's) that add the consideration of human interactions and cooperation with cyber systems and physical systems. CPSS's are becoming increasingly important as we face challenges such as regulating our impact on the environment, eradicating disease, transitioning to digital and sustainable manufacturing, and improving healthcare. Human stakeholders in these systems are integral to the effectiveness of these systems. One of the key features of CPSS is that the form, structure, and interactions constantly evolve to meet changes in the environment. Design of evolving CPSS include making tradeoffs amongst the cyber, the physical, and the social systems. Advances in computing and information science have given us opportunities to ask difficult, and important questions, especially those related to cyber-physical-social systems. In this paper we identify research opportunities worth investigating. We start with theoretical and mathematical frameworks for identifying and framing the problem – specifically, problem identification and formulation, data management, CPSS modeling and CPSS in action. Then we discuss issues related to the design of CPSS including decision making, computational platform support, and verification and validation. Building on this foundation, we suggest a way forward
    corecore