20,688 research outputs found

    Progress in the Next Linear Collider Design

    Full text link
    An electron/positron linear collider with a center-of-mass energy between 0.5 and 1 TeV would be an important complement to the physics program of the LHC in the next decade. The Next Linear Collider (NLC) is being designed by a US collaboration (FNAL, LBNL, LLNL, and SLAC) which is working closely with the Japanese collaboration that is designing the Japanese Linear Collider (JLC). The NLC main linacs are based on normal conducting 11 GHz rf. This paper will discuss the technical difficulties encountered as well as the many changes that have been made to the NLC design over the last year. These changes include improvements to the X-band rf system as well as modifications to the injector and the beam delivery system. They are based on new conceptual solutions as well as results from the R&D programs which have exceeded initial specifications. The net effect has been to reduce the length of the collider from about 32 km to 25 km and to reduce the number of klystrons and modulators by a factor of two. Together these lead to significant cost savings

    On Designing Multicore-aware Simulators for Biological Systems

    Full text link
    The stochastic simulation of biological systems is an increasingly popular technique in bioinformatics. It often is an enlightening technique, which may however result in being computational expensive. We discuss the main opportunities to speed it up on multi-core platforms, which pose new challenges for parallelisation techniques. These opportunities are developed in two general families of solutions involving both the single simulation and a bulk of independent simulations (either replicas of derived from parameter sweep). Proposed solutions are tested on the parallelisation of the CWC simulator (Calculus of Wrapped Compartments) that is carried out according to proposed solutions by way of the FastFlow programming framework making possible fast development and efficient execution on multi-cores.Comment: 19 pages + cover pag

    Prototype of Fault Adaptive Embedded Software for Large-Scale Real-Time Systems

    Get PDF
    This paper describes a comprehensive prototype of large-scale fault adaptive embedded software developed for the proposed Fermilab BTeV high energy physics experiment. Lightweight self-optimizing agents embedded within Level 1 of the prototype are responsible for proactive and reactive monitoring and mitigation based on specified layers of competence. The agents are self-protecting, detecting cascading failures using a distributed approach. Adaptive, reconfigurable, and mobile objects for reliablility are designed to be self-configuring to adapt automatically to dynamically changing environments. These objects provide a self-healing layer with the ability to discover, diagnose, and react to discontinuities in real-time processing. A generic modeling environment was developed to facilitate design and implementation of hardware resource specifications, application data flow, and failure mitigation strategies. Level 1 of the planned BTeV trigger system alone will consist of 2500 DSPs, so the number of components and intractable fault scenarios involved make it impossible to design an `expert system' that applies traditional centralized mitigative strategies based on rules capturing every possible system state. Instead, a distributed reactive approach is implemented using the tools and methodologies developed by the Real-Time Embedded Systems group.Comment: 2nd Workshop on Engineering of Autonomic Systems (EASe), in the 12th Annual IEEE International Conference and Workshop on the Engineering of Computer Based Systems (ECBS), Washington, DC, April, 200

    Beam Cleaning and Collimation Systems

    Full text link
    Collimation systems in particle accelerators are designed to dispose of unavoidable losses safely and efficiently during beam operation. Different roles are required for different types of accelerator. The present state of the art in beam collimation is exemplified in high-intensity, high-energy superconducting hadron colliders, like the CERN Large Hadron Collider (LHC), where stored beam energies reach levels up to several orders of magnitude higher than the tiny energies required to quench cold magnets. Collimation systems are essential systems for the daily operation of these modern machines. In this document, the design of a multistage collimation system is reviewed, taking the LHC as an example case study. In this case, unprecedented cleaning performance has been achieved, together with a system complexity comparable to no other accelerator. Aspects related to collimator design and operational challenges of large collimation systems are also addressed.Comment: 35 pages, contribution to the 2014 Joint International Accelerator School: Beam Loss and Accelerator Protection, Newport Beach, CA, USA , 5-14 Nov 201
    • …
    corecore