11,885 research outputs found

    An Introduction to 3D User Interface Design

    Get PDF
    3D user interface design is a critical component of any virtual environment (VE) application. In this paper, we present a broad overview of three-dimensional (3D) interaction and user interfaces. We discuss the effect of common VE hardware devices on user interaction, as well as interaction techniques for generic 3D tasks and the use of traditional two-dimensional interaction styles in 3D environments. We divide most user interaction tasks into three categories: navigation, selection/manipulation, and system control. Throughout the paper, our focus is on presenting not only the available techniques, but also practical guidelines for 3D interaction design and widely held myths. Finally, we briefly discuss two approaches to 3D interaction design, and some example applications with complex 3D interaction requirements. We also present an annotated online bibliography as a reference companion to this article

    A Content-Analysis Approach for Exploring Usability Problems in a Collaborative Virtual Environment

    Get PDF
    As Virtual Reality (VR) products are becoming more widely available in the consumer market, improving the usability of these devices and environments is crucial. In this paper, we are going to introduce a framework for the usability evaluation of collaborative 3D virtual environments based on a large-scale usability study of a mixedmodality collaborative VR system. We first review previous literature about important usability issues related to collaborative 3D virtual environments, supplemented with our research in which we conducted 122 interviews after participants solved a collaborative virtual reality task. Then, building on the literature review and our results, we extend previous usability frameworks. We identified twelve different usability problems, and based on the causes of the problems, we grouped them into three main categories: VR environment-, device interaction-, and task-specific problems. The framework can be used to guide the usability evaluation of collaborative VR environments

    Design and Evaluation of Menu Systems for Immersive Virtual Environments

    Get PDF
    Interfaces for system control tasks in virtual environments (VEs) have not been extensively studied. This paper focuses on various types of menu systems to be used in such environments. We describe the design of the TULIP menu, a menu system using Pinch Gloves™, and compare it to two common alternatives: floating menus and pen and tablet menus. These three menus were compared in an empirical evaluation. The pen and tablet menu was found to be significantly faster, while users had a preference for TULIP. Subjective discomfort levels were also higher with the floating menus and pen and tablet

    Using Pinch Gloves(TM) for both Natural and Abstract Interaction Techniques in Virtual Environments

    Get PDF
    Usable three-dimensional (3D) interaction techniques are difficult to design, implement, and evaluate. One reason for this is a poor understanding of the advantages and disadvantages of the wide range of 3D input devices, and of the mapping between input devices and interaction techniques. We present an analysis of Pinch Gloves™ and their use as input devices for virtual environments (VEs). We have developed a number of novel and usable interaction techniques for VEs using the gloves, including a menu system, a technique for text input, and a two-handed navigation technique. User studies have indicated the usability and utility of these techniques

    Pinch Keyboard: Natural Text Input for Immersive Virtual Environments

    Get PDF
    Text entry may be needed for system control tasks in immersive virtual environments, but no efficient and usable techniques exist. We present the pinch keyboard interaction technique, which simulates a standard QWERTY keyboard using Pinch Gloves™ and 6 DOF trackers. The system includes visual and auditory feedback and a simple method of calibration

    Empirical Comparisons of Virtual Environment Displays

    Get PDF
    There are many different visual display devices used in virtual environment (VE) systems. These displays vary along many dimensions, such as resolution, field of view, level of immersion, quality of stereo, and so on. In general, no guidelines exist to choose an appropriate display for a particular VE application. Our goal in this work is to develop such guidelines on the basis of empirical results. We present two initial experiments comparing head-mounted displays with a workbench display and a foursided spatially immersive display. The results indicate that the physical characteristics of the displays, users' prior experiences, and even the order in which the displays are presented can have significant effects on performance
    • …
    corecore