696 research outputs found

    The design of artifacts for augmenting intellect

    Get PDF
    Fifty years ago, Doug Engelbart created a conceptual framework for augmenting human intellect in the context of problem-solving. We expand upon Engelbart's framework and use his concepts of process hierarchies and artifact augmentation for the design of personal intelligence augmentation (IA) systems within the domains of memory, motivation, decision making, and mood. This paper proposes a systematic design methodology for personal IA devices, organizes existing IA research within a logical framework, and uncovers underexplored areas of IA that could benefit from the invention of new artifacts

    Acute Exercise and Creativity: Embodied Cognition Approaches

    Get PDF
    This dissertation manuscript is the culmination of three years of research examining several unique, exercise-induced mechanisms underlying creativity. This collection of work addresses historical and current empirical concepts of creativity in a narrative review, providing recommendations for future research. Several reviews follow this introduction, highlighting the proposed effects of exercise on creativity, putative mechanisms for creativity, and the effects of exercise and embodied manipulations on creative behavior. Multiple experiments utilizing moderate-intensity exercise as a theoretical stimulus for higher-order cognitions were conducted to investigate associations between exercise and creativity, which lead to the final dissertation experiment. The dissertation experiment was the first to provide statistically significant evidence for acute, moderate-intensity treadmill exercise coupled with anagram problem-solving to prime subsequent RAT completion compared to a non-exercise, priming only condition. We emphasize that the additive effects of exercise plus priming may be a viable strategy for enhancing verbal convergent creativity. Future research is warranted to explore a variety of priming effects on the relationship between exercise, embodied interventions, and creativityThis dissertation manuscript is the culmination of three years of research examining several unique, exercise-induced mechanisms underlying creativity. This collection of work addresses historical and current empirical concepts of creativity in a narrative review, providing recommendations for future research. Several reviews follow this introduction, highlighting the proposed effects of exercise on creativity, putative mechanisms for creativity, and the effects of exercise and embodied manipulations on creative behavior. Multiple experiments utilizing moderate-intensity exercise as a theoretical stimulus for higher-order cognitions were conducted to investigate associations between exercise and creativity, which lead to the final dissertation experiment. The dissertation experiment was the first to provide statistically significant evidence for acute, moderate-intensity treadmill exercise coupled with anagram problem-solving to prime subsequent RAT completion compared to a non-exercise, priming only condition. We emphasize that the additive effects of exercise plus priming may be a viable strategy for enhancing verbal convergent creativity. Future research is warranted to explore a variety of priming effects on the relationship between exercise, embodied interventions, and creativit

    Discoverable Free Space Gesture Sets for Walk-Up-and-Use Interactions

    Get PDF
    abstract: Advances in technology are fueling a movement toward ubiquity for beyond-the-desktop systems. Novel interaction modalities, such as free space or full body gestures are becoming more common, as demonstrated by the rise of systems such as the Microsoft Kinect. However, much of the interaction design research for such systems is still focused on desktop and touch interactions. Current thinking in free-space gestures are limited in capability and imagination and most gesture studies have not attempted to identify gestures appropriate for public walk-up-and-use applications. A walk-up-and-use display must be discoverable, such that first-time users can use the system without any training, flexible, and not fatiguing, especially in the case of longer-term interactions. One mechanism for defining gesture sets for walk-up-and-use interactions is a participatory design method called gesture elicitation. This method has been used to identify several user-generated gesture sets and shown that user-generated sets are preferred by users over those defined by system designers. However, for these studies to be successfully implemented in walk-up-and-use applications, there is a need to understand which components of these gestures are semantically meaningful (i.e. do users distinguish been using their left and right hand, or are those semantically the same thing?). Thus, defining a standardized gesture vocabulary for coding, characterizing, and evaluating gestures is critical. This dissertation presents three gesture elicitation studies for walk-up-and-use displays that employ a novel gesture elicitation methodology, alongside a novel coding scheme for gesture elicitation data that focuses on features most important to users’ mental models. Generalizable design principles, based on the three studies, are then derived and presented (e.g. changes in speed are meaningful for scroll actions in walk up and use displays but not for paging or selection). The major contributions of this work are: (1) an elicitation methodology that aids users in overcoming biases from existing interaction modalities; (2) a better understanding of the gestural features that matter, e.g. that capture the intent of the gestures; and (3) generalizable design principles for walk-up-and-use public displays.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    From Artificial Intelligence (AI) to Intelligence Augmentation (IA): Design Principles, Potential Risks, and Emerging Issues

    Get PDF
    We typically think of artificial intelligence (AI) as focusing on empowering machines with human capabilities so that they can function on their own, but, in truth, much of AI focuses on intelligence augmentation (IA), which is to augment human capabilities. We propose a framework for designing intelligent augmentation (IA) systems and it addresses six central questions about IA: why, what, who/whom, how, when, and where. To address the how aspect, we introduce four guiding principles: simplification, interpretability, human-centeredness, and ethics. The what aspect includes an IA architecture that goes beyond the direct interactions between humans and machines by introducing their indirect relationships through data and domain. The architecture also points to the directions for operationalizing the IA design simplification principle. We further identify some potential risks and emerging issues in IA design and development to suggest new questions for future IA research and to foster its positive impact on humanity

    Visual Representation of Explainable Artificial Intelligence Methods: Design and Empirical Studies

    Get PDF
    Explainability is increasingly considered a critical component of artificial intelligence (AI) systems, especially in high-stake domains where AI systems’ decisions can significantly impact individuals. As a result, there has been a surge of interest in explainable artificial intelligence (XAI) to increase the transparency of AI systems by explaining their decisions to end-users. In particular, extensive research has focused on developing “local model-agnostic” explainable methods that generate explanations of individual predictions for any predictive model. While these explanations can support end-users in the use of AI systems through increased transparency, three significant challenges have hindered their design, implementation, and large-scale adoption in real applications. First, there is a lack of understanding of how end-users evaluate explanations. There are many critiques that explanations are based on researchers’ intuition instead of end-users’ needs. Furthermore, there is insufficient evidence on whether end-users understand these explanations or trust XAI systems. Second, it is unclear which effect explanations have on trust when they disclose different biases on AI systems’ decisions. Prior research investigating biased decisions has found conflicting evidence on explanations’ effects. Explanations can either increase trust through perceived transparency or decrease trust as end-users perceive the system as biased. Moreover, it is unclear how contingency factors influence these opposing effects. Third, most XAI methods deliver static explanations that offer end-users limited information, resulting in an insufficient understanding of how AI systems make decisions and, in turn, lower trust. Furthermore, research has found that end-users perceive static explanations as not transparent enough, as these do not allow them to investigate the factors that influence a given decision. This dissertation addresses these challenges across three studies by focusing on the overarching research question of how to design visual representations of local model-agnostic XAI methods to increase end-users’ understanding and trust. The first challenge is addressed through an iterative design process that refines the representations of explanations from four well-established model-agnostic XAI methods and a subsequent evaluation with end-users using eye-tracking technology and interviews. Afterward, a research study that takes a psychological contract violation (PCV) theory and social identity theory perspective to investigate the contingency factors of the opposing effects of explanations on end-users’ trust addresses the second challenge. Specifically, this study investigates how end-users evaluate explanations of a gender-biased AI system while controlling for their awareness of gender discrimination in society. Finally, the third challenge is addressed through a design science research project to design an interactive XAI system for end-users to increase their understanding and trust. This dissertation makes several contributions to the ongoing research on improving the transparency of AI systems by explicitly emphasizing the end-user perspective on XAI. First, it contributes to practice by providing insights that help to improve the design of explanations of AI systems’ decisions. Additionally, this dissertation provides significant theoretical contributions by contextualizing the PCV theory to gender-biased XAI systems and the contingency factors that determine whether end-users experience a PCV. Moreover, it provides insights into how end-users cognitively evaluate explanations and extends the current understanding of the impact of explanations on trust. Finally, this dissertation contributes to the design knowledge of XAI systems by proposing guidelines for designing interactive XAI systems that give end-users more control over the information they receive to help them better understand how AI systems make decisions

    A checklist to combat cognitive biases in crowdsourcing

    Full text link

    An extended AI-experience : Industry 5.0 in creative product innovation

    Get PDF
    Creativity plays a significant role in competitive product ideation. With the increasing emergence of Virtual Reality (VR) and Artificial Intelligence (AI) technologies, the link between such technologies and product ideation is explored in this research to assist and augment creative scenarios in the engineering field. A bibliographic analysis is performed to review relevant fields and their relationships. This is followed by a review of current challenges in group ideation and state-of-the-art technologies with the aim of addressing them in this study. This knowledge is applied to the transformation of current ideation scenarios into a virtual environment using AI. The aim is to augment designers’ creative experiences, a core value of Industry 5.0 that focuses on human-centricity, social and ecological benefits. For the first time, this research reclaims brainstorming as a challenging and inspiring activity where participants are fully engaged through a combination of AI and VR technologies. This activity is enhanced through three key areas: facilitation, stimulation, and immersion. These areas are integrated through intelligent team moderation, enhanced communication techniques, and access to multi-sensory stimuli during the collaborative creative process, therefore providing a platform for future research into Industry 5.0 and smart product development
    • …
    corecore