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Abstract: 

We typically think of artificial intelligence (AI) as focusing on empowering machines with human capabilities so that they 
can function on their own, but, in truth, much of AI focuses on intelligence augmentation (IA), which is to augment human 
capabilities. We propose a framework for designing intelligent augmentation (IA) systems and it addresses six central 
questions about IA: why, what, who/whom, how, when, and where. To address the how aspect, we introduce four 
guiding principles: simplification, interpretability, human-centeredness, and ethics. The what aspect includes an IA 
architecture that goes beyond the direct interactions between humans and machines by introducing their indirect 
relationships through data and domain. The architecture also points to the directions for operationalizing the IA design 
simplification principle. We further identify some potential risks and emerging issues in IA design and development to 
suggest new questions for future IA research and to foster its positive impact on humanity. 

Keywords: Intelligence Augmentation, Artificial Intelligence, Design Principle, Simplification, Interpretability, Risks, 
Human-AI Interaction. 
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1 Introduction 
Artificial intelligence (AI) applications have grown tremendously in number in recent years, particularly in 
areas such as medicine, finance, customer service, and online marketing. As the relationships between 
machines and humans evolve, we need to re-examine how human-machine teaming may impact human 
work in the future. Scholars have increasingly acknowledged that, in addition to a focus on empowering 
machines with human capabilities so that they can function on their own, AI also focuses on intelligence 
augmentation (IA); that is, enhancing and elevating human intelligence, capacity, performance, protection, 
and quality of life with support from information technology (Zhou et al., 2021). We consider fraud detection 
in financial statement audits as a scenario to illustrate the different focuses between IA and AI. 

The Association of Certified Fraud Examiners (2022) has estimated that organizations lose five percent of 
their revenue to fraud each year and for losses to fraud on a global scale to exceed more than US$4.7 
trillion. Thus, fraud detection has significant economic impacts on organizations, their investors, and other 
stakeholders. Although financial reporting misconduct (9%) occurs less commonly than other types of fraud, 
it costs significantly more (median value US$593,000) (Association of Certified Fraud Examiners, 2022). 
Independent human auditors play an important role in detecting fraud risks, such as material misstatements 
in financial reporting, which helps support effective internal control, promote good financial reporting 
practices, and protect investors.  

In this scenario, AI primarily automates the detection process by optimizing how well fraud-detection models 
perform algorithmically. However, state-of-the-art models still face many issues due to the complexity and/or 
challenges of detecting fraud risks. As a result, those models may fail to identify material misstatements in 
financial statements, which can cause financial losses to organizations and investors as the above statistics 
evidence.   

On the other hand, IA focuses on how to empower human auditors in detecting fraud risks with AI-enabled 
detection models. Even though the above models have imperfections, an IA system can: 

1) Make inferences in a way that resembles the way auditors would explain to people how to detect 
fraud 

2) Identify precursors or evidence for fraudulent activity in a form that auditors can easily check and 
leave it to human auditors to decide whether and how to use the precursors or evidence in 
assessing fraud risks 

3) Assist human auditors in complying and keeping up with Public Company Accounting Oversight 
Board auditing standards, following good auditing practice, and recognizing possible mistakes, 
which can help human auditors sharpen their auditing skills; and/or 

4) Enable human auditors to identify new ways to detect fraud.   

We can characterize IA along two main dimensions: 1) a technical dimension that encompasses computer 
systems that enable IA and 2) a social dimension that describes the stakeholders and environmental factors 
that IA interacts with via taking inputs and/or exerting impact. Additionally, the two dimensions relate to each 
other. The technologies that enable IA have advanced rapidly. For example, many real-world applications 
now use deep learning, which can automatically learn complex patterns from vast amounts of data 
(particularly unstructured data such as images, sound waves, and text). OpenAI’s ChatGPT, which gained 
one million users in the first five days after it released to the general public, seems to be at or near a tipping 
point of being generally useful to people across many different domains by enabling “human-machine hybrid 
work” (Mollick, 2022). In this research commentary, we focus more on IA’s technical dimension even though 
we recognize the social aspect’s importance. 

This commentary starts with addressing “WH” questions central to IA. We draw on discussion at a panel at 
the 55th Hawaii International Conference on System Sciences. In answering these questions, we introduce 
an IA framework that comprises six key aspects important to designing and developing IA systems. In 
particular, the how aspect highlights four IA design principles (i.e., simplification, interpretability, human 
centeredness, and ethics), while the what aspect goes beyond the direct interactions between humans and 
machines by introducing their indirect relationships through data and domain, which leads to the proposed 
four-component IA architecture. These components also provide directions for operationalizing the IA 
design simplification principle. In addition, we discuss the potential risks related to developing IA technology, 
such as privacy, misuse, deskilling, and emotional attachment/detachment. Furthermore, we identify 
emerging issues in IA research, such as design patterns, IA maintenance, conflict management, IA 
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intervention, data cycle in IA development, re/upskilling, embodiment for IA, and IA use cases. The proposed 
6WH framework, the IA component architecture, and the identified potential risks and emerging issues can 
serve as a guide for researchers, designers, developers, managers, employees, policymakers, and other 
stakeholders involved in the IA ecosystem to foster IA’s positive impacts on humanity.  

2 A 6WH Framework of IA 
The IA literature has grown exponentially in the past decade (Zhou et al., 2021). Going beyond a conceptual 
definition, we propose a framework for IA by asking the standard 6WH questions to systematically explain 
IA. The framework characterizes IA based on six dimensions: why, what, how, who/whom, where, and when. 
The why aspect states the motives behind IA, what describes what IA focuses on compared with AI in 
general, how introduces the methods and guidelines for building IA, who/whom depicts the roles involved 
in the IA ecosystem, where illustrates where one can apply IA, and when addresses when one should use 
IA. We introduce each of the above dimensions in detail next. 

 
Figure 1. A 6WH Framework for IA 

2.1 Why: Motives of IA 
Many people have come to expect increasingly more from AI due to evolving computing hardware and 
software technologies and ever-growing big data. However, a reality check (Cross, 2020) suggests that 
many people feel AI has yet to deliver its grand promises and still struggles with reasoning and 
generalization across different tasks. Some scholars even think that AI remains in its very early stages and 
that it fails to reach its potential in many areas, particularly in some real-world applications. For instance, 
output quality (how well a system performs job-related tasks, such as improving the clinical outcomes for 
patients and enhancing clinical efficacy) constituted a contributing factor for why surgeons adopted 
technology (Reynolds, 2020). Today, most surgical robotics have a limited ability “to perform procedures 
and make decisions automatically without major human intervention” (Stumpo et al., 2021, p. 2680). Poor 
output quality can result from the difficulty in addressing model issues such as complexity, robustness, and 
adaptation (to the environment and tasks) and data issues such as availability, quality, and 
representativeness. These challenges may impose fundamental constraints on what AI can do. IA has the 
potential to give machine learning models a more useful alternative by drawing on humans’ knowledge and 
experience and keeping humans in charge.  

In many ways, AI already should be IA because AI focuses on “serv[ing] human needs by way of 
comprehensible, predictable, and controllable tools, appliances, and user experiences” (Shneiderman, 
2020, p.113). In other words, humans should control or command AI since AI should not perform its tasks 
and solve problems separately. In AI’s early days, when the first computer program demonstrated the ability 
to converse with humans in natural language (a pioneer in chatbot), many people perceived the program to 
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have the potential to improve the quality of people’s lives, such as patients with mental health issues (Colby 
et al., 1966). Such potential further inspired the U.S. Government’s interest in a machine that could 
transcribe and translate spoken language (Anyoha, 2017) to keep it competitive with other superpowers. 
One could argue that IA systems have had more practical successes than fully automated decision-making 
AI tools—not only in speech transcription and translation but also in many other areas such as Internet 
search and recommender systems.   

IA faces several critical practical challenges. The lack of model interpretability for human understanding and 
evaluation along with the imperfection and under-delivery of AI for real-world application results in humans’ 
lack of trust in most AI technologies developed in research labs, which further hampers their widespread 
adoption. We can perceive this poor trust as warranted in many cases since AI model engineers do not 
often test their models well enough before releasing them, and problems with their training and datasets 
could cause harm in high-stakes settings. For instance, although AI in medicine has paved the way for smart 
operating rooms, where robots play a major role in carrying out surgical steps while minimizing human 
intervention (Stumpo et al., 2021), neurosurgeons often face problems in trying to adopt the technology in 
their clinical practice (Reynolds, 2020). As another practical issue, machine learning models for computer 
vision and language continue to increase in complexity and, thus, have led to an increase in their 
engineering cost and extra cost associated with their optimization. As a result, many organizations cannot 
afford to build powerful AI models, test them, and deploy them in real applications. One possible solution to 
create opportunities for businesses involves putting humans in the center and building simpler, less costly 
models that can deliver value for users. Building these simpler models that interface better with humans can 
drive future research and development in IA and lead to more trustworthy and practical AI system 
deployments. 

2.2 What: The Relationship between Humans and Machines 
One needs to understand the relationship between humans and machines to grasp the IA concept. On one 
hand, machines have a wide range of capabilities that can complement or extend certain capabilities that 
humans have. Machines currently outperform humans in some intelligence dimensions, such as 
computational efficiency, storage, and throughput efficiency. For example, machines can communicate with 
tens of thousands of people in an interactive way simultaneously, which far surpasses what any human can 
achieve. Machines can also appear to be empathetic and shield emotions without having actual emotional 
burdens that typical humans do. On the other hand, humans can broadly understand the world at a system 
level in a way that current AI systems cannot replicate. In addition to humans’ excellence in perceptual, soft, 
and some cognitive skills, identity can fundamentally distinguish human intelligence and machine 
intelligence. Klein and Nichols (2012) show that people can derive their personal identity from the memories 
about past events and mineness (“the mode of existence of experiences and does not presuppose a subject, 
but rather constitutes it” (Fasching, 2009, p. 133)). Despite the exponential growth in computer memory and 
retrieval efficiency, AI systems typically cannot (or their creators did not design them to) exhibit mineness 
or human-like memory that can tell a story about its own experience or having surprises and performing 
commonsense reasoning and generalization. Therefore, it can be a win-win situation for humans and 
machines to team up.  

IA emphasizes the symbiotic relationship between humans and machines (Licklider, 1960). In the 
relationship, humans define the goals for machine intelligence, while machines incorporate human 
knowledge to refine their models and translate their learned information to humans to form new knowledge. 
On one hand, human intelligence defines machine intelligence and ways of achieving that so that machines 
can best help rather than compete with (or replace) humans. Furthermore, humans define the goal, build 
machine intelligence, and drive the socio-economic implications of machine intelligence to help human 
intelligence.  

The symbiotic relationship fundamentally addresses the issue of how humans can trust AI, especially when 
the latter lacks full capability. By using machines to augment human intelligence, humans can become more 
intelligent in some ways than they have ever been. AI can also help scale human operations and make 
scarce human resources much more accessible. Alternatively, humans may offload mundane tasks to 
machines and trust machines to do them in exchange for the time and effort to do something more 
interesting or creative or tasks they can perform better. In both cases, machines can help humans gather 
information and lay out different alternatives but leave it to the human users to make the final decisions. 

In addition to the direct relationship between humans and machines, they could also have an indirect 
relationship through data and/or domain.  To this end, we extend MLBiD (a framework of machine learning 
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on big data) (Zhou et al., 2017) to IA by introducing a four-component architecture that comprises human, 
model (machine), data, and domain (see Figure 2).  

 
Figure 2. A Four-component IA Architecture 

● The human component covers developers, end users, and other roles involved in the IA 
ecosystem (see Section 2.3); their knowledge, experience, and preferences in terms of the 
problem domain and models; and the application context such as organizational culture.  

● The model component covers building and maintaining machine learning and statistical 
techniques that can learn patterns from data with guidance from human and domain knowledge.  

● The data component covers general or domain-specific data that comes from various modalities, 
such as numbers, text, image, and video, and can appear in various forms, such as raw data, 
rules, and patterns.  

● The domain component serves both as a knowledge source for IA and as a context in which one 
deploys IA. In addition, different tasks may rely on different types of intelligence (Zhou et al., 
2021) and have different automation potentials (Vimalkumar et al., 2021). 

These components intertwine and mutually enhance each other. For instance, data strengthens the 
relationship between humans and machines by both serving as model inputs/outputs and 
capturing/improving human insights. Likewise, the domain also enhances the relationship between humans 
and machines because humans can provide both domain knowledge and feedback on domain outcomes 
that models generate; meanwhile, machines can consider domain requirements that they solicit from 
humans and generate outcomes to solve humans’ problems in the domain. The domain and data share an 
obvious connection since the data are generated from the domain. 

2.3 Who/For Whom: The Roles Involved in IA 
The roles involved in IA can range from end users, developers, super users, analysts, analytical modelers, 
and managers to individuals subject to the decisions. We must consider who should build IA and who should 
maintain it (e.g., debugging, model tuning, and enhancement) when something goes wrong. Efforts to build 
IA involve two related yet conflicting trends.  

The first trend concerns efforts to democratize AI by making it available and accessible to a broader user 
population even though people may have limited AI experience or domain knowledge. IA and AI differ in 
how much AI (or machine learning) expertise they assume the user to have. Unlike AI, which often requires 
AI knowledge or expertise (or excludes user input entirely), IA gives more and special emphasis on AI 
democratization because not everyone has AI expertise, understands machine learning, or has 
programming skills. As a result, IA ensures everyone can interact with AI in the real world (e.g., ChatGPT 
(Mollick, 2022)). As more people develop and apply machine learning to more applications, it impacts more 
people with low AI literacy or numeracy skills. In a hypothetical world, users whose intelligence IA will 
augment and whom IA’s decisions will affect constitute the right people to answer the questions about 
building and maintaining IA. It is a desirable situation because these people understand and care about 
those applications. Further, the IA ecosystem should also involve policymakers and companies who develop 
IA systems. 
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The second trend concerns the increasing complexity that one faces in building machine learning 
applications from both development and operational perspectives. Machine learning continues to become 
more complex in terms of both its algorithms and the number of parameters. Even though machine learning 
frameworks with simple APIs (e.g., Keras (Keras Team, 2015)) help reduce developers’ cognitive load in 
implementing algorithms and make it easy to develop models, it would be inadequate to put humans in the 
center of an IA ecosystem without providing them with systematic guidance on how to develop IA from 
developers or engineers and interfaces to help them understand the implications that their programming 
choices may have. Successful IA deployments require a close partnership between the business/users and 
AI experts. 

2.4 How: Design Guidelines and Principles 
Drawing on decades of research and experience in machine learning, human-robot interaction, software 
engineering, and design science, we introduce four IA design principles: simplification, interpretability, 
human centeredness, and ethics.  

2.4.1 Simplification 
This principle focuses on simplifying humans’ decision-making process and the need for human knowledge. 
The IA architecture components point to the directions for the simplification principle (see Figure 2): 

1) First, take complex models and turn them into simple tools that people can use for some 
applications. Despite a complex tradeoff between simplicity and accuracy, the context of the 
discussion is to improve simplicity without compromising accuracy (Rudin, 2019). For instance, 
studies (Paleja et al., 2020; Silva et al., 2020; Sun et al., 2020) have proposed techniques to 
simplify the training process and resulting deep neural network models without incurring 
accuracy loss.  

2) Second, reduce data requirements. We can approach data simplification from two 
perspectives: data quality and data preprocessing. Generally, higher-quality data is more difficult 
to obtain and takes more time in preprocessing for model building. We can capture data quality 
in four dimensions (Wang & Strong, 1996): intrinsic (in conformance with the true data values, 
such as accuracy and reputation), contextual (pertinent to the users’ task or decision-making 
process at hand, such as value added, relevancy, timeliness, completeness, and an appropriate 
amount of data), representational (concerning the format and meaning of data, such as 
interpretability, consistent and concise representation, and ease of understanding), and 
accessibility (available or obtainable to data consumers). Obtaining quality data incurs various 
costs, such as data-acquisition costs and labeling costs (Turney, 2002). Poor data quality can 
result in poor model performance (Sanders, 2017), delayed project deliverables, lower customer 
satisfaction, and increased costs (Redman, 1998). On a related note, researchers have claimed 
data preprocessing or preparation (e.g., data cleansing, normalization, and labeling) to take up 
to 70 percent of the total time in machine learning or data-mining projects (see (Lean et al., 
2006)). Thus, simplifying data by lowering the data-quality requirements and data-preparation 
efforts can have significant practical and managerial implications. Nevertheless, it is difficult to 
operationalize the data-simplification principle in isolation; rather, it requires one to interact with 
other IA architecture components. For instance, supervised machine learning models require 
labeled data (high representational data quality and data preparation effort) for training and 
testing, and the latter often remains practically challenging and costly to obtain. In dataless 
classification (Chang et al., 2008) and zero-data learning (Larochelle et al., 2008), a machine 
learning technique uses world knowledge, such as the meaning of class labels or a description 
of classes, to induce classifiers. Inspired by the above types of methods, zero-shot learning (Xian 
et al., 2019) allows a model to recognize data such as image objects from classes that it may 
not have observed during training. Moreover, combining reinforcement learning and natural 
language processing can lead to improved success rate in zero-shot learning and improved 
efficiency in transferring knowledge from solved tasks to new tasks (Silva et al., 2022). Few-shot 
learning (Li et al., 2006) can generalize to new tasks with only a few samples by leveraging prior 
knowledge. In addition, one can alleviate the need for contextual and representational data 
quality by leveraging foundational models, such as BERT (Devlin et al., 2019), DALL.E2 (see 
https://openai.com/dall-e-2/), and GPT-3 (Floridi & Chiriatti, 2020), which use massive amounts 
of unlabeled data for training yet can serve as the foundation for training models for and 
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transferring knowledge to a wide range of downstream tasks. Foundation models can “facilitate 
NLP research and model development at all scales” (Wiggins & Tejani, 2022, p. 1). One can 
adapt these general models to specific tasks with much smaller task-specific data via fine-tuning. 
Another way to achieve simplified data is by focusing on parts of data (e.g., parts of an image 
that one wants to compare with prototypical parts of images from a given class (Chen et al., 
2019)). Furthermore, combining simplified data and simplified models would be even more 
powerful.   

3) Third, echoing the idea behind AI democratization (see Section 2.3), lower the AI literacy that 
human users require to interact with AI.  

4) Fourth, simplify the domain by drawing on a multi-dimensional comparison between human and 
machine intelligence (Zhou et al., 2021). A domain or task would often be considered simpler if 
it is structured (vs. unstructured), static/certain (vs. dynamic/uncertain), repetitive (vs. non-
routine), specialized (vs. general), and so on.  

2.4.2 Interpretability 
Users need to be able to interpret AI algorithms or machine learning models and such algorithms and models 
require transparency for users to adopt them in high-stakes decisions. For instance, people have made 
significant attempts at developing machine learning models for medical imaging. It would be very helpful to 
explain to a radiologist why a machine learning model based on the imaging data suggests that they should 
biopsy a lesion (Barnett et al., 2021). As one possible explanation, a part of the lesion under evaluation 
could look like part of another patient’s already diagnosed lesion. Such an explanation would help a 
radiologist make an accurate diagnosis. Developing interpretable IA methods also helps close the control 
loop on human-machine interaction. If AI users or clients do not understand the reasoning process that a 
model followed to arrive at a particular decision, they would not be able to adopt the model nor help machine 
learning engineers troubleshoot or improve it. Interpretable machine learning, which comes in different forms 
as we illustrate below, addresses the above issues. Note that interpretable machine learning (Rudin et al., 
2022) differs from explainable machine learning (Rudin, 2019); while explainable machine learning explains 
the important variables in black box models, interpretable machine learning designs inherently interpretable 
models that reveal their reasoning processes. Some example interpretable machine learning models 
include: 

● Scoring systems or risk scores: in a scoring system that awards points for each feature, one 
can use these points in sum to predict risks. For instance, physicians in intensive care units in 
hospitals use AI-generated risk scores to predict patient risks for seizure (Ustun & Rudin, 2019). 
Historically, people have not designed risk scores using AI. Traditional methods for producing 
them rely on manual feature elimination in a post-processing step, which does not lead to optimal 
solutions. To learn optimized scores, researchers have formulated the risk scoring problem as a 
mixed integer non-linear program and proposed optimization-based methods for producing 
scoring systems from data. The methods “allow practitioners to address application-specific 
constraints without parameter tuning or post-processing” (Ustun & Rudin, 2019; Xin et al., 2022).  

● Sparse decision trees: decision trees offer interpretability by producing decision rules that 
humans can easily comprehend. Nonetheless, complex decision trees with many leaves and 
much depth go against the interpretability principles. Sparse decision tree models maximize the 
accuracy while minimizing the number of leaves (Lin et al., 2020). Researchers have extended 
these models to work for reinforcement learning domains in which these models learn a decision-
making policy through trial and error (Paleja et al., 2020; Silva et al., 2020).  

● Dimension reduction and data visualization: these models take high-dimensional data, such 
as biological data, and project it down to a two-dimensional space so that people can try to 
understand the cluster or manifold structure in the data. One related challenging question 
concerns how to preserve the original data’s local and global structure (Wang et al., 2022a).  

● Estimated causal effects: to perform observational causal inference, which goes beyond 
prediction, one can mimic a randomized controlled trial that randomly assigns participants to one 
of two groups: an experimental group that receives the evaluated target treatment and the control 
group that receives a conventional (or no) treatment. In addition, the participants in both types 
of groups match as closely as possible, and the target treatment constitutes the only major 
difference between the groups. If one finds any difference in the outcomes between the two 
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groups, under appropriate assumptions, one can infer that a cause-effect relation between the 
treatment and the outcome exists (e.g., see Wang et al., 2021).  

Since interpretability makes it easier to understand the reasoning behind predictions and decisions, it can 
also help one operationalize the simplification principle.  

2.4.3 Human-centeredness 
By putting humans at the center of systems-design thinking, human-centered AI focuses on designing 
systems that “support human self-efficacy, promote creativity, clarify responsibility, and facilitate social 
participation” (Shneiderman, 2020). The emphasis on humans encourages technology design to consider 
goals, such as privacy, security, social justice, and gender equality. The 10 levels of automation represents 
the canonical taxonomy for understanding a human’s (or machine’s) role in a human-AI system (Sheridan 
& Verplank, 1978). In particular, the taxonomy ranges from manual control/no AI assistance (level 1) to full 
automation (level 10). However, this taxonomy only defines and does not prescribe: which level of 
automation should a system have? Further, the taxonomy helps address how humans can or should trust 
AI, especially when an automated system has different competencies. Research has shown that humans 
can have trouble self-regulating their trust in automated systems, which can result in inappropriate 
compliance or reliance on their advice or actions (Gombolay et al., 2018; Natarajan & Gombolay, 2020). To 
this end, Shneiderman (2020) proposed a framework for creating new technology designs that comprise 
two dimensions (i.e., human control and computer automation) that each range from low to high levels. 
Combining these two dimensions can lead to four ways to think about new designs. For instance, high 
human control and high automation could co-exist (e.g., washing machines and cruise control in cars). In 
addition, one can improve low human control and automation design to high human control design either 
with or without higher computer control. To prevent against excessive computer control or human control 
and their associated risks, every design process for an improved system should include a step to design 
the coupling between the two dimensions (Shneiderman, 2020). Another key idea behind human 
centeredness concerns a trade-off between researchers’ and designers’ desires to make computers 
humanlike and human users’ desire to be in control. 

2.4.4 Ethics 
While algorithmic automation can help an organization achieve economic gains by improving process 
efficiency, it also raises ethical concerns (Vimalkumar et al., 2021). One can extend the ethical principles 
for design science research (Myers & Venable, 2014) to guide efforts to design and develop IA to help 
address potential AI-related risks to individuals and society as a whole. These principles include the public 
interest (explicitly identify all stakeholders and critically consider what benefit or harm may result for/to such 
stakeholders), informed consent (obtain informed consent from any person involved in the project), privacy 
(ensure adequate safeguards to protect the privacy of the people who are directly involved in the current 
project and who might use the artifact or be affected by its use), honesty and accuracy (acknowledge 
inspiration from other sources and honestly report research finding), property (agree about the ownership 
over the IP and collected information), and artifact quality (ensure an artifact’s quality and that one can use 
it safely). However, addressing these ethical principles presents significant research challenges due to their 
implementation complexity. To this end, researchers (Benke et al., 2020) point out two pathways that one 
can extend to IA design: 1) articulate the next-generation ethical principles using prescriptive knowledge 
structures from AI and 2) extend established AI conceptualizations with an ethical dimension. 

2.5 When: The Time of Intervening 
Given that IA focuses on augmenting human intelligence, an important question concerns when machine 
intelligence should intercede to augment human intelligence and when humans should make a decision on 
their own. If machine intelligence intervenes too much (e.g., the old Microsoft paperclip that the company 
intended to act as the human user’s assistant), many people will choose to turn it off. In addition, letting 
humans decide when to use machine intelligence also helps to keep AI under control. A related question 
concerns when humans should trust machine intelligence.  

Some moments when machine intelligence or an AI system might intervene include:  

• At key moments when humans feel uncertain or confused about making the right decision or 
coming up with a solution to a problem. For instance, decades of research and practice in 
situational awareness suggest that humans perform poorly at vigilance tasks because they 



120 From Artificial Intelligence (AI) to Intelligence Augmentation (IA): Design Principles, Potential Risks, and 
Emerging Issues 

 

Volume 15  Paper 5 
 

require hard mental work and are stressful (Warm et al., 2008). Yet, humans should know if 
something important will come in the future.    

• When machine intelligence can perform a task more easily and cost effectively than a human. 
In the case the model performs poorly, it may be important to be able to diagnose what went 
wrong. Examples include self-driving cars, face ID, and digital voice assistants.  

• When machine intelligence can better ensure the quality measures that human users value most. 
For instance, once human users decide on accuracy as the most important quality measure for 
a specific task, they should leverage machine intelligence to achieve better accuracy since 
machine intelligence generally outperforms human users in such tasks (humans generally need 
to check high-stakes decisions before making them). We have seen much growth in the number 
of documents and regulations regarding AI ethics such as fairness (vs. bias) in recent years 
(Schiff et al., 2021; Robert et al., 2020). If humans or businesses consider fairness as a key 
quality measure and perceive that AI models could help eliminate human biases in decision 
making, then they could leverage machine learning models for assistance. Criminal justice 
represents one example: one can more easily fix an algorithm than human judges given the latter 
constitute biased black boxes (Mullainathan, 2019).  

• When transferring the power that humans do not want to have or may not mind forgoing to 
machines. This issue differs from whether AI or humans can perform a task more capable. 
Examples include smart thermostats and spelling checkers. In a business context, a human 
customer service representative may not want to answer the same questions hundreds and even 
thousands of times a day when interacting with customers. Conversational bots, on the other 
hand, can do that constantly and instantaneously, and a transition to a human representative 
would only occur whenever necessary.  Such a design allows humans to focus on less routine 
and more interesting tasks (Gagné et al., 2022), which might also help boost their productivity.  

• When an operation becomes dangerous (e.g., when natural disasters, war and regional 
instabilities, and other humanitarian crises occur) (Walsh et al., 2019, xxiii).  

• When one lacks resources and humans cannot perform a task due to limited or nonexistent 
availability. An example includes bedside monitors in hospitals. Humans cannot feasibly look at 
each bedside monitor manually to flag possible emergencies; thus, machines should perform it 
automatically. 

Researchers have also considered hybrid or “mixed-initiative” schemes that essentially automate the 
problem of deciding whether a human or machine should do which task and when. For example, Johnson 
(2010) developed a “meta” AI that dynamically determined which tasks to allocate to a human pilot or an 
autopilot for landing on the moon to achieve a workload balance between the human and autopilot systems. 
In contrast to such discrete allocation schemes, some researchers have tried to develop approaches that 
blend human and AI system inputs, which could be a state or time-dependent blending (Bradshaw et al., 
2004).  

Transitioning to machine intelligence that enables decision support goes beyond just showing that the 
underlying algorithms make good decisions. It is important to contextualize and culturize the human-
machine relationship concerning the rules and cultural norms of an organization, institution, particular field, 
and so on that IA exists in. In some contexts, humans have been and will always engage in making decisions 
regardless of whether humans or machines make better decisions. Prominent examples include high-stake 
and complex decision-making settings such as healthcare, criminal justice, and the military, which may 
involve complex planning and scheduling problems.   

2.6 Where: IA Application and Impact 
IA has received research attention and application across a wide range of disciplines (Zhou et al., 2021), 
such as information systems, computer science, medicine, business, telecommunication, education, 
architecture, information science, law, materials science, and so on. The deployment context and the end 
goal of IA for that specific context have emerged as significant factors in deploying AI (Paul et al., 2022). IA 
has begun changing the way people work, study, and live and has important implications for work in the 
future at all levels (i.e., the individual, group, community, organizational, societal, national, and international 
levels). IA has the potential to increase the effectiveness and productivity of human work significantly and, 
thus, to drive economic growth and development.  
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Typical IA applications use machine intelligence to improve an individual’s or team’s productivity and scale 
up the number of customers who can receive high-quality service in a fixed amount of time and budget. 
Examples include automating high-touch student services by giving personalized learning advice to each 
student based on the student's learning style and personality at scale, collaborative decision making in 
enterprises, personalized medicine and healthcare services at scale (Gombolay et al., 2018), human-
computer collaborative driving, and cloud robotics (Zheng et al., 2017). According to the Gartner 2020 CIO 
Agenda (Panetta, 2019), 40 percent of infrastructure and operations teams in large enterprises will use AI-
augmented automation by 2023, which will lead to increased productivity with greater agility and scalability. 
In addition, researchers have also highlighted cybersecurity and counterterrorism as IA application areas 
(Jain et al., 2021).  

Emerging AI techniques such as foundation models and stable diffusion (generating high-resolution or 
realistic images conditioned on text descriptions (Rombach et al., 2022)) have enabled new use cases and 
resulted in much excitement. For instance, ChatGPT (Mollick, 2022) has the potential to extend human 
intelligence, creativity, and problem solving (e.g., composing marketing messages or generating python 
code to perform data analytics). One can potentially use these solutions directly or they can serve as a basis 
for humans to perfect. These technologies, while promising, may have less impact than one might expect 
given that one cannot easily control them; in other words, it is difficult to troubleshoot these models and 
constrain them to provide a domain-specific result. ChatGPT, for instance, can write a convincing scientific-
looking paper; however, it might contain blatantly false content, and we lack a clear way to fix this issue as 
yet. 

3 Potential IA Risks 
While developing IA, one should recognize its potential risks. These risks pose challenges in building IA and 
signal its potential negative implications. 

3.1 User Privacy 
Training models for IA can benefit from using users’ private information. For instance, users’ demographic 
information can be invaluable for customer relationship management in business, such as online marketing 
and personalized recommendations. Many studies over the past decade have inferred users’ demographics 
or attributes from their data, such as name, gender, ethnicity (Wood-Doughty et al., 2018), age, religious 
and political views (Bi et al., 2013; Kosinski et al., 2013), education levels, whether they have children or 
not, income, life satisfaction (Volkova & Bachrach, 2016), sexual orientation, marital status, blood type and 
zodiac sign (Zhong et al., 2013), location and social strategies (Dong et al., 2014), personality (Wang, Guo, 
Lan, Xu, & Cheng, 2016), and even intelligence, happiness, whether they use addictive substances, and 
parental separation (Kosinski et al., 2013). The data that researchers have used to make such inferences 
ranged from search queries (Bi et al., 2013), social media text (Volkova et al., 2015), network structure 
(Dong et al., 2014), emotion tone and contrast (Volkova & Bachrach, 2016), social images (Wu et al., 2017), 
purchase history (Wang et al., 2016), online behavior (Kosinski et al., 2013), and so on. Moreover, cognitive 
AI assistants can further infer a person's potential strengths and weaknesses by analyzing user behavior.  

While personal information can enhance IA’s effectiveness, access to it also raises serious privacy 
concerns. Indeed, the ongoing use of privacy-invading technology has become problematic (Noorden, 
2020). Few locations in the US currently restrict someone from using facial recognition technology as well, 
which could lead to pervasive monitoring practices. A notable exception to the lack of is the Biometric 
Information Privacy Act (BIPA) (2008), an Illinois state bill that the Governor of Illinois signed into law in 
2008. This bill restricts private entities from collecting, using, or storing biometric data, such as fingerprints, 
voiceprint, and iris scans, without written, informed consent. However, the bill has some key exceptions; for 
example, it places no restrictions on government entities. Further, courts continue to debate the law’s 
implications, such as whether facial recognition constitutes “biometric” (e.g., Fredy Sosa v. Onfido Inc.; 
Monroy v. Shutterfly, Inc. (Kracht, Mueller, Sotto, & Sterns, 2018)). Five other states have introduced bills 
like BIPA with only New Hampshire successfully passing their bill, New Hampshire House Bill 523 (2018). 
At the national level, Senator Jeff Merkley introduced the “National Biometric Information Privacy Act of 
2020”, but the bill never received a vote (GovTrack, 2020). While the US has been slower to adopt privacy 
measures, the European Union has been more proactive and adopted the General Data Protection 
Regulation (GDPR) in 2018, which provides many safeguards for consumer data privacy.   
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3.2 IA Misuse 
As humanity continues to democratize AI, some people or organizations will unavoidably take advantage of 
and even weaponize it to cause serious harm to humanity. After all, humans still supervise IA and can use 
it as they wish. Studies have shown how people may behave less ethically and be more willing to deceive 
when acting through AI agents across a wide range of social tasks (Gratch & Fast, 2022) partly because, 
by introducing a new agent into the equation, some new forms of power in interpersonal tasks could bypass 
existing social and regulatory checks on unethical behavior (Gratch & Fast, 2022). For instance, people 
have used social text bots to generate text for social media platforms. Advances in AI such as transformer-
based machine learning techniques enable generating synthetic text that mimics human-created news 
stories in style and substance (Kreps et al., 2022). Research has even found this AI-generated text to be 
hard to distinguish from human-generated text. Due to the power that social media can exhibit in general 
and the influence that individual social media “users” can wield, bad actors can disseminate misinformation 
and disinformation rapidly to shape public perception and opinions on controversial political, economic, and 
social issues (Najee-Ullah et al., 2022). Despite ChatGPT’s great potential in assisting human tasks, its 
biggest impact may be in creating phishing emails or even malware, which would pose risks to cybersecurity 
(Lee et al., 2022). Moreover, businesses could use users’ private attributes to manipulate human behavior 
in a far more effective and less detectable way than traditional manipulative marketing strategies because 
the information that AI algorithms detect enables businesses to personalize addictive strategies and to 
exploit human biases, emotion vulnerability (Petropoulos, 2022), or even decision making vulnerabilities 
(Dezfouli et al., 2020). As a general concern, IA misuse could erode AI trustworthiness. 

3.3 Deskilling 
IA may enhance skills by fostering people to use “high-performance work practices” more frequently (Holm 
& Lorenz, 2022). For instance, increasing access to IA allows humans to look up information and even 
obtain suggestions very quickly. On the other hand, IA may also lead to reduced critical thinking skills in 
people. Deskilling refers to a loss in one’s skills and/or a decline in one’s performance after AI automates a 
manual task (Cabitza et al., 2017). For instance, overreliance on automated decision support can lead to 
automation bias, which can cause clinicians to stop looking for medical evidence after receiving AI output 
and to make technology-dependent reasoning rather than informed decision making (Ross & Spates, 2020). 
Consequently, deskilling can result in reduced clinician autonomy, decision-making quality, diagnostic 
reasoning, and communication with patients (Ross & Spates, 2020). In their survey study on the relationship 
between AI use in daily activities and job skill requirements, Holm and Lorenz (2022) found that individuals 
who used AI each day to take orders (receiving orders or directions automatically generated by machines) 
had some negative effects on jobs across all skill levels. In addition, AI use negatively affected mid-skill 
workers (who experienced experienced decreased learning and increased monotony) more strongly than 
high- and low-skill workers (Holm & Lorenz, 2022). Further, technology dependence could contribute to 
adverse safety events, and health practitioners need to avoid the dependence to prevent medical errors 
(Ross & Spates, 2020). 

3.4 Emotional Attachment and Detachment 
As AI becomes more human and emotionally intelligent, it has a greater potential to induce consumers’ 
attachment to it (Hermann, 2022). Researchers have designed social robots, which possess socially 
intelligence in a human-like way (Breazeal, 2002), to support personal interactions that involve emotions 
and feelings. As affective AI (Scheutz, 2012) and the reliance on automation increase, people start to 
develop some degree of social psychological attachment to machines. On the one hand, such an attachment 
could provide humans with a sense of security (support for exploration and self-development) and safety 
(comfort in times of distress) (Rabb et al., 2022). On the other hand, the bond that humans establish through 
interacting with machines may lead to separation anxiety (Rabb et al., 2022). A recent study (Gillath et al., 
2021) found that priming attachment anxiety can lead to reduced trust in AI due to a preoccupation with 
thoughts about rejection and abandonment. Additionally, if affective artificial agents (that can have affective 
states of their own) act in an irresponsible manner or do not get the social aspects of the affective behavior 
right, they can cause harm to human users (Scheutz, 2012). For example, if an artificial agent knows that a 
person had a high chance to become addicted to playing a game, an irresponsible agent might empower 
another person or business to use such knowledge to exploit the person’s affective reactions and 
dependencies and take advantage of that person. Furthermore, AI companions may negatively impact their 
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users’ social interactions with other humans (Skjuve et al., 2021). Detachment from human partners can 
cause psychological harm to humans (Schrum et al., 2021). 

4 Emerging Issues 
With guidance from the 6WH IA framework, we identify several emerging issues in IA to suggest new 
questions for future research, address IA’s potential risks, and enhance its positive impacts. 

4.1 Design Patterns for IA 
AI lives on software. Accordingly, in designing and developing IA, one can find enlightenment from software 
engineering practices. For traditional software development, software engineering methodologies and 
principles provide guidelines on designing, developing, evaluating, and maintaining computer software. The 
field has created design patterns that represent reusable solutions and best practices for addressing some 
recurring design problems in a certain context (Gamma et al., 1995).  

We can reimagine the software engineering principles and systematic guidelines for IA, which include how 
to design and evaluate IA and how to choose and adapt design patterns in building IA. For instance, after 
comparing some machine learning methods, AI engineers/developers typically present the best model to 
users. However, it would be interesting to understand how users explore different good models so that they 
can decide on the best one themselves (e.g., see Xin et al., 2022; Dong & Rudin, 2020; Fisher et al., 2019; 
Wang et al., 2022b). For instance, doctors and other model users do not just want one single model but a 
set of models that they can explore so they can select the one they most prefer based on their assessment. 
Thus, presenting not just one but many good models could be a potential IA design pattern. We can expect 
these design patterns and guidelines to speed up the development process, detect failure, make it easy to 
correct system errors, and allow the system to fail gracefully. Identifying and adapting design patterns could 
represent an important and interesting direction for building IA. 

4.2 IA Maintenance 
Although it has never been easier for someone to build machine learning models, it remains difficult to 
understand whether the model they use represents the right or even a good one, how they can fix the model 
when something goes wrong, and/or how they can prevent it from going wrong in the first place. The fact 
that not all users or clients have engineering knowledge makes the maintenance issue even more important 
and challenging. 

Based on software development experience over many decades, software engineering goes through 
lifecycles and constitutes an ongoing process. In particular, software maintenance, where developers 
constantly fine-tune system performance and debug and fix errors, represents a major issue. It may even 
reach a point where the developers have to discard the old system and start again from scratch. As IA 
becomes increasingly available, efforts to develop an IA system will likely follow a similar path to meet 
changing requirements and support trustworthy IA, which poses challenges for developing IA technology 
ecosystems.  

Good maintenance practice, which in itself may require guidelines, has the potential to address the 
challenges. As with the how aspect that we discuss in Section 2.4, the maintenance issue concerns not only 
developers but the end users as well. Developers/organizations should inform IA end users about this issue 
as they start to adopt IA systems. Developers/organizations need to continuously feed knowledge to their 
IA systems and keep them current. Otherwise, the IA systems will face survival risks and their clients will 
eventually abandon them.   

A related issue concerns maintenance costs. Owing to AI in medicine, one can use robotic technology not 
only to carry out surgical steps based on established protocol but also to make adjustments according to 
the environment and take preventative actions against errors (Stumpo et al., 2021). A survey study on global 
robotic-technology adoption (Stumpo et al., 2021) found that neurosurgeons who had never used robotics 
in clinical practice identified the inherent acquisition/maintenance costs as the most important factor that 
prohibited them from adopting robotics in their clinical practice. Despite the availability of various libraries, 
tools, and frameworks for developing IA solutions, the cost to implement (US$20,000 to US$1,000,000 
(Sanyal, 2021)) not to mention maintain complete IA solutions remains not low or even high. This is partly 
because an off-the-shelf solution needs customizing and tuning to perform well in a specific organization or 
business context. 
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4.3 IA Conflict Management 
An IA system does not always work in isolation; sometimes, it interacts with other IA systems. The latter 
can also benefit from design principles. Inter-IA relationships will likely be dynamic rather than static in 
nature, which would cause conflicts. For instance, consider if two family members who used personalized 
IAs (e.g., listening to their favorite music through their house) suddenly come to the same room at the same 
time. Addressing such a situation requires design principles. The individual IAs could follow different 
principles to resolve the conflict, such as negotiation (having the two IAs negotiate to arrive at a mutual 
agreement), avoidance (switching off IA to avoid conflict), and inaction (continuing to use both IA at the 
same time).    

To help different IAs reach agreement regarding a certain quality of interest when negotiating to resolve 
conflicts, one can draw on the protocols for consensus or synchronization problems in multi-agent systems. 
Multi-agent systems, such as coordination between agents, security, and task allocation, have faced similar 
challenges (Dorri et al., 2018). Depending on individual agents’ constraints and self-dynamics, the protocols 
for consensus can come in different types, such as consensus with constraints, event-based consensus, 
consensus over signed networks (either cooperative or competitive), and consensus among heterogeneous 
agents (Qin et al., 2017). On the other hand, the process to resolve conflict may lead to understanding and, 
thus, conflict can also be beneficial. Further, in a world where people had 100 machine agents that worked 
for them, they would need to act as an (parallel and not just serial) entrepreneur to manage the agents 
effectively and efficiently. 

4.4 IA Intervention 
The intervention issue extends to the when aspect of IA, and it could result from a combination of push and 
pull between AI automation and human involvement. We can expect the relationship between humans and 
machines to vary depending on the context. A more fundamental issue concerns how to ensure an IA 
intervention can recognize the context to ensure that it steps in at the right time and intercede in the right 
ways. One potential direction posits that IA should intercede when humans do something unethical 
regardless of their intention; for instance, the algorithm could intercede if humans try to spread 
misinformation (whether or not they recognize it as such) or information that could harm other people, such 
as hate speech and profanity. Such interventions could help prevent others from weaponizing the 
information. Platforms on which people spread misinformation could leverage IA interventions to moderate 
or even correct content to protect users from harmful information. For example, researchers have developed 
speech censorship chatbot systems with reinforcement learning techniques that comprise an aggressive 
speech censorship model and a speech purification model (Cai et al.,, 2022) to both detect aggressive 
speech and respond to its rapid evolution. Researchers have also developed an analytical pipeline with 
transformers and generative models to both detect and correct online misinformation (Meyer et al., 2022). 
Moreover, Gonçalves et al. (2021) showed that people perceive AI content moderation as more transparent 
than human content moderation, especially in situations when one cannot feasibly provide users with 
explanations or additional information for content removal. On the other hand, some have expressed 
concerns about using IA in policing, law enforcement, and judicial proceedings, such as predictive policing 
(using historic crime data to identify individuals or geographic areas with elevated risks for future crimes), 
which can have implications for discriminatory policing (Asaro, 2019). 

4.5 Data Cycle in IA Development 
In the IA component architecture (see Figure 2), humans and machines can interact indirectly through data. 
In case a machine learning model does not perform well enough, developers and researchers have typically 
gone through the model cycle by continuously tuning the model parameters to improve its quality. Even with 
robust model training techniques, they still need to cope with imperfect data (Whang et al., 2023). Given the 
significant influence that data quality and data representativeness have on how well machine learning 
models perform (e.g., Gennatas et al., 2020), we have seen a recent data cycle trend that involves an 
iterative process that involves collecting, cleaning, selecting, validating, and integrating data to improve its 
quality. The data cycle along with the model cycle provides a great way for humans to integrate their domain 
knowledge. The cycle can also help address the emerging regulatory requirements for AI fairness or ethics 
in general. Introducing data-centric processes and management for IA can further have significant impacts 
on organizations’ techno-social structure and management priorities. On the other hand, this trend makes 
data quality essential to IA applications, which would otherwise introduce bias. In contrast to fairness, bias 
describes “problems related to the gathering or processing of data that might result in prejudiced decisions 
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on the bases of demographic features such as race, sex, and so forth” (Ntoutsi et al., 2020). Bias can 
manifest in sensitive features and causal inferences, data representativeness, and data modalities (Ntoutsi 
et al., 2020). It can lead to inequalities in the AI outcomes (Carter et al., 2020). Thus, we need measures to 
mitigate and account for bias in advancing data-driven AI for augmenting human intelligence. 

4.6 Re/Upskilling 
AI will not replace service providers, but service providers who use IA to augment their performance will 
replace service providers who do not.  Every person in an organization is a service provider, and, as AI-
based digital twin technologies advance, learning many skills will become less costly and also be 
personalized for the learners (Spohrer et al., 2022). AI-driven education platforms can improve training by 
helping to educate everyone, which will make a big difference in reskilling (increasing people's ability to 
switch jobs after they have taken one) and upskilling people (continuous skill-building or education in various 
fields such as medicine). They have the potential to address the different levels of the digital divide in general 
(Riggins & Dewan, 2005; Wei et al., 2010) and the AI divide specifically (Carter et al., 2020), which includes 
inequalities related to access to AI, AI skills or self-efficacy, and outcomes from employing AI. Many expect 
future IA applications in education to fundamentally transform the domain and allow people to stay relevant 
and increase their mobility. Since younger generations are more likely to embrace the changes than the 
older ones, we may see skill shifts in whole industries, which would create new work, play, learning, 
shopping, and socializing opportunities for everyone.  

4.7 Soft-skill Training 
In addition to having language skills, one can also empower machines with advanced human soft skills, 
such as active listening (which enables them to engage with human users empathetically) and reading 
between the lines (which enables them to automatically infer users’ unspoken needs and wants, interests, 
and personality from a conversation). Such skills can not only enable machines to automate complex tasks 
but also can augment human intelligence with insights to determine the next best actions. For example, 
machines can pass on patient personality insights that they infer to human caregivers, who can then best 
help the patients and, thereby, truly fulfill IA’s purpose. Tangentially, researchers have found robots to 
potentially exhibit the ability to improve social skills in children on the autism spectrum (Scassellati et al., 
2018). 

4.8 Embodiment for IA 
Whether built into a conventional computer, smartphone display interface, or physical robot, AI and IA can 
have significant impacts on how humans interact with a system. Robinette et al. (2016) have shown that 
humans in a simulated burning building may inappropriately rely on a robot that should guide the human 
outside even when that robot displays malfunction behaviors. In a healthcare application, researchers 
(Gombolay et al., 2018) showed that computer-based IA had harmful effects on humans’ reliance on and 
compliance with the system as compared to a system in a physical robot. Kontogiorgos et al. (2020) showed 
that physical, robot-embodiment improved a user’s willingness to continue work with a failing system. Yet, 
a potential mitigating factor in whether embodiment matters could be the degree to which the human 
anthropomorphizes the system (Natarajan & Gombolay, 2020). While it may seem counterintuitive or 
unproductive to put design and engineering effort into developing a physically embodied IA for only cognitive 
tasks, research shows that embodiment (or lack thereof) can have significant impacts on interaction fluency. 

4.9 Exploring IA Use Cases 
IA has abundant potential application. At its full potential, IA will impact our daily life both personally and 
professionally in many aspects. We envision at least two broad categories for using IA. The first category 
involves aiding humans in their personal lives. A personal AI advisor could augment every individual to help 
them learn about themselves (e.g., their strengths and weaknesses) and could gain information to help 
guide individuals to optimize the decisions they make (e.g., making a career choice or financial planning). 
The second category involves aiding humans at the workplace in various sectors, such as healthcare, 
biology, agriculture, climate change, social justice, and scientific discovery. All employees could have their 
own AI assistant that could augment them in many different ways, such as from automating human 
engagements to writing project proposals.  Moreover, as we continue to democratize AI, every person 
should be able to customize and manage their own personal AI advisor or professional AI assistant without 
the need to write code or have AI expertise. 
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Naturally, using AI to assist human tasks or augment human intelligence in new ways will drive new 
requirements for IA technologies, and these use cases will become an important part of the IA ecosystem. 

5 Conclusion 
The 6WH framework and the detailed propositions we present in this paper provide guidelines for future 
research in IA. The framework, architecture, and risks and emerging issues that we identify can serve as a 
useful guide for scholars from diverse disciplines to further efforts to research and design IA, for practitioners 
to understand the IA lifecycle, and even for other stakeholders to evaluate and provide feedback on IA. 
Developing good IA systems is a challenging task. As IAs become better over time, humans as individuals 
will gain more capability. A better future will require not only technical improvements to the underlying 
algorithms but also improved interaction designs between AI and humans that consider the strengths and 
weaknesses on both sides. In our efforts to find good ways to use IA for humanity, we also need to measure 
socio-technical interactions, not just the technical part, as we think about IA as a socio-technical system. 
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