1,704,989 research outputs found
A Powerful Optimization Tool for Analog Integrated Circuits Design
This paper presents a new optimization tool for analog circuit design. Proposed tool is based on the robust version of the differential evolution optimization method. Corners of technology, temperature, voltage and current supplies are taken into account during the optimization. That ensures robust resulting circuits. Those circuits usually do not need any schematic change and are ready for the layout.. The newly developed tool is implemented directly to the Cadence design environment to achieve very short setup time of the optimization task. The design automation procedure was enhanced by optimization watchdog feature. It was created to control optimization progress and moreover to reduce the search space to produce better design in shorter time. The optimization algorithm presented in this paper was successfully tested on several design examples
Quantization Design for Distributed Optimization
We consider the problem of solving a distributed optimization problem using a
distributed computing platform, where the communication in the network is
limited: each node can only communicate with its neighbours and the channel has
a limited data-rate. A common technique to address the latter limitation is to
apply quantization to the exchanged information. We propose two distributed
optimization algorithms with an iteratively refining quantization design based
on the inexact proximal gradient method and its accelerated variant. We show
that if the parameters of the quantizers, i.e. the number of bits and the
initial quantization intervals, satisfy certain conditions, then the
quantization error is bounded by a linearly decreasing function and the
convergence of the distributed algorithms is guaranteed. Furthermore, we prove
that after imposing the quantization scheme, the distributed algorithms still
exhibit a linear convergence rate, and show complexity upper-bounds on the
number of iterations to achieve a given accuracy. Finally, we demonstrate the
performance of the proposed algorithms and the theoretical findings for solving
a distributed optimal control problem
Reliability Based Design Optimization of Concrete Mix Proportions Using Generalized Ridge Regression Model
This paper presents Reliability Based Design Optimization (RBDO) model to deal with uncertainties involved in concrete mix design process. The optimization problem is formulated in such a way that probabilistic concrete mix input parameters showing random characteristics are determined by minimizing the cost of concrete subjected to concrete compressive strength constraint for a given target reliability. Linear and quadratic models based on Ordinary Least Square Regression (OLSR), Traditional Ridge Regression (TRR) and Generalized Ridge Regression (GRR) techniques have been explored to select the best model to explicitly represent compressive strength of concrete. The RBDO model is solved by Sequential Optimization and Reliability Assessment (SORA) method using fully quadratic GRR model. Optimization results for a wide range of target compressive strength and reliability levels of 0.90, 0.95 and 0.99 have been reported. Also, safety factor based Deterministic Design Optimization (DDO) designs for each case are obtained. It has been observed that deterministic optimal designs are cost effective but proposed RBDO model gives improved design performance
Optimization of broaching design
Broaching is one of the most recognized machining processes that can yield high productivity and high quality when applied properly. One big disadvantage of broaching is that all process parameters, except cutting speed, are built
into the broaching tools. Therefore, it is not possible to modify the cutting conditions during the process once the tool is manufactured. Optimal design of broaching tools has a significant impact to increase the productivity and to
obtain high quality products. In this paper, an optimization model for broaching design is presented. The model results in a non-linear non-convex optimization problem. Analysis of the model structure indicates that the model can be decomposed into smaller problems. The model is applied on a turbine disc broaching problem which is considered as one of the most complex broaching operations
Wiring optimization explanation in neuroscience: What is Special about it?
This paper examines the explanatory distinctness of wiring optimization models in neuroscience. Wiring optimization models aim to represent the organizational features of neural and brain systems as optimal (or near-optimal) solutions to wiring optimization problems. My claim is that that wiring optimization models provide design explanations. In particular, they support ideal interventions on the decision variables of the relevant design problem and assess the impact of such interventions on the viability of the target system
Bayesian optimization for materials design
We introduce Bayesian optimization, a technique developed for optimizing
time-consuming engineering simulations and for fitting machine learning models
on large datasets. Bayesian optimization guides the choice of experiments
during materials design and discovery to find good material designs in as few
experiments as possible. We focus on the case when materials designs are
parameterized by a low-dimensional vector. Bayesian optimization is built on a
statistical technique called Gaussian process regression, which allows
predicting the performance of a new design based on previously tested designs.
After providing a detailed introduction to Gaussian process regression, we
introduce two Bayesian optimization methods: expected improvement, for design
problems with noise-free evaluations; and the knowledge-gradient method, which
generalizes expected improvement and may be used in design problems with noisy
evaluations. Both methods are derived using a value-of-information analysis,
and enjoy one-step Bayes-optimality
Matrix-Monotonic Optimization for MIMO Systems
For MIMO systems, due to the deployment of multiple antennas at both the
transmitter and the receiver, the design variables e.g., precoders, equalizers,
training sequences, etc. are usually matrices. It is well known that matrix
operations are usually more complicated compared to their vector counterparts.
In order to overcome the high complexity resulting from matrix variables, in
this paper we investigate a class of elegant multi-objective optimization
problems, namely matrix-monotonic optimization problems (MMOPs). In our work,
various representative MIMO optimization problems are unified into a framework
of matrix-monotonic optimization, which includes linear transceiver design,
nonlinear transceiver design, training sequence design, radar waveform
optimization, the corresponding robust design and so on as its special cases.
Then exploiting the framework of matrix-monotonic optimization the optimal
structures of the considered matrix variables can be derived first. Based on
the optimal structure, the matrix-variate optimization problems can be greatly
simplified into the ones with only vector variables. In particular, the
dimension of the new vector variable is equal to the minimum number of columns
and rows of the original matrix variable. Finally, we also extend our work to
some more general cases with multiple matrix variables.Comment: 37 Pages, 5 figures, IEEE Transactions on Signal Processing, Final
Versio
Evolutionary Synthesis of HVAC System Configurations: Algorithm Development.
This paper describes the development of an optimization procedure for the synthesis of novel heating, ventilating, and air-conditioning (HVAC) system configurations. Novel HVAC system designs can be synthesized using model-based optimization methods. The optimization problem can be considered as having three sub-optimization problems; the choice of a component set; the design of the topological connections between the components; and the design of a system operating strategy. In an attempt to limit the computational effort required to obtain a design solution, the approach adopted in this research is to solve all three sub-problems simultaneously. Further, the computational effort has been limited by implementing simplified component models and including the system performance evaluation as part of the optimization problem (there being no need in this respect to simulation the system performance). The optimization problem has been solved using a Genetic Algorithm (GA), with data structures and search operators that are specifically developed for the solution of HVAC system optimization problems (in some instances, certain of the novel operators may also be used in other topological optimization problems. The performance of the algorithm, and various search operators has been examined for a two-zone optimization problem (the objective of the optimization being to find a system design that minimizes the system energy use). In particular, the performance of the algorithm in finding feasible system designs has been examined. It was concluded that the search was unreliable when the component set was optimized, but if the component set was fixed as a boundary condition on the search, then the algorithm had an 81% probability of finding a feasible system design. The optimality of the solutions is not examined in this paper, but is described in an associated publication. It was concluded that, given a candidate set of system components, the algorithm described here provides an effective tool for exploring the novel design of HVAC systems. (c) HVAC & R journa
- …
