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This paper describes the development of a model-based optimization procedure for the synthesis
of novel heating, ventilating, and air-conditioning system configurations. The optimization
problem can be considered as having three suboptimization problems: the choice of a compo-
nent set; the design of the topological connections between the components; and the design of a
system operating strategy. In an attempt to limit the computational effort required to obtain a
design solution, the approach adopted in this research is to solve all three subproblems simulta-
neously. The computational effort has been further limited by implementing simplified compo-
nent models and including the system performance evaluation as part of the optimization
problem (there being no need, in this respect, to simulate the system performance).

The optimization problem has been solved using a Genetic Algorithm (GA) that has data
structures and search operators specifically developed for the solution of HVAC system optimi-
zation problems. The performance of the algorithm and various search operators has been
examined for a two-zone optimization problem, the objective of the optimization being to find a
system design that minimizes system energy use. In particular, the performance of the algorithm
in finding feasible system designs has been examined. It was concluded that the search was
unreliable when the component set was optimized, but if the component set was fixed as a
boundary condition on the search, then the algorithm had an 81% probability of finding a feasi-
ble system design. The optimality of the solutions is not examined in this paper but is described
in an associated publication (Wright and Zhang 2008). It was concluded that, given a candidate
set of system components, the algorithm described here provides an effective tool for exploring
the design of novel HVAC systems. 

INTRODUCTION
The capital cost, energy use, or life-cycle cost of a building can be minimized through the use

of simulation-based numerical optimization in which a simulation is used to evaluate the perfor-
mance of the building for each trial solution of the optimization. To date, the approach has been
applied to (1) the optimization of the building fabric construction (Caldas and Norford 2002,
2003; Wetter and Wright 2004; Wang et al. 2005); (2) the sizing of heating, ventilating, and
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air-conditioning (HVAC) systems (Wright and Hanby 1987; Wright 1996); (3) HVAC system
supervisory control (Nassif et al. 2005); (4) the simultaneous optimization of building construc-
tion, HVAC-system size, and system supervisory control (Wright and Farmani 2001; Wright et
al. 2002); and the optimization of building layout (Jo and Gero 1998; Gero and Kazakov 1998).
However, to date, no research exists for the synthesis of optimum HVAC system designs.

A review of existing HVAC system designs (Wright et al. 2004) indicates that a variety of
HVAC configurations have evolved to match the diversity in building design and the thermal
load conditions. However, there is no guarantee that for every new building an optimum HVAC
system configuration already exists. Optimum system performance can only be guaranteed if the
HVAC system is synthesized to capitalize on the thermal characteristics of the building. This
paper describes an approach to the synthesis of optimum HVAC system configurations for min-
imum energy use (the application of the approach to the synthesis of an example HVAC system
is described in Wright and Zhang (2008). 

Development of the optimization procedure has been informed by the characteristics of the
design problem and a perceived need to limit the computational effort associated with simulat-
ing the system performance (any optimization will require the performance simulation of many
alternative system designs).

OPTIMIZATION APPROACH
In general, there are three elements to the synthesis of a new HVAC system as follows:

1. Selection of appropriate system components (heating and cooling coils, humidifiers, air mix-
ing sections, etc.)

2. Definition of the topological connections between the components
3. Optimization of the full load capacity of the components and the system control strategy

Since a topology cannot be formed until the component set has been selected, and the system
capacity and operation cannot be optimized until the topology has been defined, the design of
such systems is usually performed sequentially. The sequential design process is generally
reflected in an optimization procedure that iterates among the three design tasks (e.g., as in the
approach described by Diwekar et al. [1992]).

Figure 1 illustrates the iterative optimization approach in which there are three nested optimi-
zations, each optimization being represented by a separate Do{…}Until loop. The highest-level
loop optimizes the choice of component set; the second level optimizes the system topology;
and the lowest level optimizes the system capacity and operation. The Vary(.) functions repre-
sent the operators of the particular optimization algorithm that generate the new solutions (it
being possible to use different optimization algorithms for each subproblem). Note that the sys-
tem capacity and operation cannot be optimized until a feasible topology has been found (a fea-
sible topology being one that provides a workable system configuration). The system control
and capacity optimization is also constrained in that the system must have sufficient capacity
and be operated in a manner that maintains the zone thermal comfort (the system components
must also operate within their performance limits). Also, note that the optimality of each optimi-
zation process is a function of the system performance as evaluated by the performance simula-
tion in the system capacity and control optimization loop.

The iterative optimization procedure in Figure 1 has a high computational overhead in that the
sub-optimization problems must be repeated for each trial solution of the upper loop(s). In par-
ticular, there are likely to be many alternative topologies for a given component set with the
result that the topology optimization may require many trial solutions and associated suboptimi-
zations of the system capacity and control strategy. Therefore, in order to reduce the number of
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system performance simulations that would result from the repeated optimization of the system
capacity and control strategy, in this research the component set, system topology, capacity, and
control strategy have been optimized simultaneously. Figure 2 illustrates the general form of the
algorithm, there being only one optimization—a Do{…}Until loop. Although this procedure
should result in fewer system performance simulations than the iterative approach, it has the dis-
advantage that the optimization is more constrained than any one suboptimization in the iterative
approach and, therefore, is potentially more difficult to solve.

SYSTEM MODELING

The simplification of the system models and simulation procedure is necessary to reduce the
computational time spent in performing the many system simulations. The modeling approach
adopted here is also a function of the manner in which the system-control variables and strategy
are defined.

Representation of an Optimum Control Strategy

Since the majority of system configurations synthesized by the optimization will be novel, it
may not be possible to implement a conventional control strategy for every new configuration.
Therefore, in this research, the controlled variables for each load condition are optimized
directly by the optimization algorithm (the optimization algorithm therefore acts as an optimum
controller). In this study, the control variables are the capacity of the components and the
air-mass flow rates through each part of the system. The practicable implementation of the opti-
mized control strategy would have to be inferred a posteriori to the optimization. It may not be
possible to replicate exactly the optimized control strategy using contemporary control systems.
However, the approach adopted here ensures that the optimum performance and, therefore, full
potential of each system is used in evaluating each trial system during the optimization (any dif-
ference in performance of the optimized systems should then be due to the system configuration
and not the manner in which it is controlled).

Figure 1. Iterative optimization process.
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System Performance Simulation

Although the simultaneous optimization procedure (Figure 2) limits the number of system
simulations required by the optimization, the system simulation remains the computationally
dominant element of the optimization. The computationally intensive part of a system simula-
tion is associated with the iterative procedure used to solve the system performance equations.
In this research, the computational overload associated with the system performance simulation
has been limited by the following:

1. Using simplified steady-state process models for each system component, a simplified model
having fewer equations to solve than a detailed model.

2. Solving the system performance equations simultaneously as part of the optimization prob-
lem and without the need for iteration between the equations.

The simplified process models (Zhang 2005) have three elements: the thermal capacity of the
component, an input-output psychometric process model to calculate the condition of the air
leaving the component, and an air-mass flow rate balance and air-pressure loss model. The con-
trolled variables associated with the simplified models are the thermal capacity of the compo-
nents and air-mass flow rates at a particular load condition. Note that the term capacity is used
here to indicate the capacity at a given load condition rather than just at the peak load condition. 

The need to iterate on the system performance equations is associated with a cycle in the sys-
tem, the only source of cycles resulting from the simplified models being the recirculation of air
from the zone back through the system. Therefore, iteration between the system equations can
be avoided by breaking the air cycle(s) at the entry to the zone(s) and assuming that the air leav-
ing the zone is at the desired temperature and humidity. Given that the component capacity and
air-mass flow rates have been set by the optimization (since they are the controlled variables),
the component input-output process models can then be used sequentially to determine the sup-
ply air condition. However, it may be the case that, at a particular point in the optimization, the
specified component capacities and air-mass flow rates result in the supply-air condition that
cannot meet the zone loads. The optimization must therefore be constrained to ensure that the
supply-air condition meets the zone loads. 

For example, Figure 3 illustrates a novel single-zone system consisting of a heating coil, two
cooling coils, two pair of flow-mixing and flow-diverting duct branches, and the zone (the sup-
ply and extract fans are not illustrated). The component capacities , and air-mass

Figure 2. Simultaneous optimization process.
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flow rates  are set by the optimization, with the choice of which air mass flow rates
to optimize having been decided by a graph-theoretic analysis of the system topology. Given the
ambient temperature (Tambient), the zone design temperature (Tdesign), the component capacities,
and the air-mass flow rates, it is possible to calculate the supply-air condition (Tsupply). A com-
parison of this to the supply-air temperature necessary (Trequired) to offset the zone load 
can be used to form a constraint on the optimization so that . Note that,
although this example is for the sensible heat only, the latent heat is also included in the compo-
nent models.

Fan-Duct System Model
Given that we seek to simplify the system simulation, the fan and associated duct

flow-pressure relationships have not been modeled explicitly. However, the fan energy use is
calculated as a function of the pressure drop across each system component, the pressure drop
being a function of the air-mass flow rate through the component.

SELECTION OF AN OPTIMIZATION ALGORITHM
The choice of an optimization algorithm is in general dependent on the characteristics of the

optimization problem (in terms of the nature of the problem variables, the problem constraints,
and the problem objective function). 

There are three groups of problem variables associated with the optimization: the component
set; the system topology; and the component capacities and system air-mass flow rates (there
being separate capacity and flow-rate variables for each load condition). The component set can
be represented by a simple discrete index variable that points to the component type; the topol-
ogy can also be represented by discrete index variables in the form of an adjacency matrix.
However, the component capacities and air-mass flow rates are continuous variables and, there-
fore, the optimization problem is mixed-integer. The dimensionality of the problem is also high,
with some problems considered in this research having in the order of 1019 alternative topolo-
gies (Wright et al. 2004; Wright and Zhang 2008).
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Figure 3. Novel single-zone system.
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The objective function in this research is the system energy use, which is a nonlinear function
of the problem variables. The problem is highly constrained, with constraints maintaining the
feasibility of the topology and the viability of the supply-air conditions and ensuring that the
system components operate within practicable performance limits. The search space is also
highly multimodal in that each feasible topology will result in a local minimum for system
energy use. 

The solution of such mixed-integer, nonlinear, multimodal, high-dimensionality topological
optimization problems is almost exclusively limited to the population-based, probabilistic evo-
lutionary algorithms (EA). Perhaps the most successful EA to date for the solution of topologi-
cal optimization problems is that of genetic programming (GP) (Koza 1992). GP is a form of EA
in which the solutions are represented as parse trees. GP has been applied successfully to a large
number of difficult topological optimization problems (Koza et al. 2003). However, the
approach is highly computationally intensive and produces output that can be difficult to inter-
pret. Therefore, the approach adopted in this research is to develop a problem-specific EA that is
more computationally effective than a generic GP algorithm. The selected algorithm is based on
an EA form closely related to GP—a genetic algorithm (GA).

Genetic Algorithms

A detailed introduction to GAs can be found in many texts (among others, Goldberg [1989];
Bäck [1996]; Deb [2001]; and De Jong [2006]). Briefly, GAs operate on a set of solutions (a pop-
ulation) using probabilistic search operators. Figure 4 illustrates the main algorithm operators.
First, the population of solutions is initialized (normally by randomly selecting variable values to
lie within specified bounds). Second, the solutions are evaluated and a fitness is assigned to each
solution, fitness being a relative measure of the optimality of a solution in comparison to the opti-
mality of the other solutions in the population. In the case of this research, fitness assignment
requires the system energy use and constraint function values to be calculated. Fitness assignment
is followed by a selection procedure in which pairs of solutions are probabilistically selected from
the population, where the chance of an individual being selected is in some proportion to its fit-
ness. The pairs of selected solutions are then used to form two new solutions in a process of
recombination. However, since the recombination process is probabilistic, it is possible that

Figure 4. A genetic algorithm.
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recombination does not take place and that the new solutions are identical to the selected pair of
individuals (this also occurs when the selected individuals are identical). The variable values of
the recombined solutions are then probabilistically perturbed in a process known as mutation.
Finally, two old solutions from the population are replaced with the newly created solutions. The
process of selection, recombination, mutation, and replacement continues until the population has
been completely replaced with new solutions. Note that, since recombination and mutation are
probabilistic, some solutions may be identical to those found in the old population. It is also com-
mon for the replacement operators to ensure that the best solution found to date is not replaced
and therefore is retained in the population. The algorithm continues to iterate on the population
until convergence is reached (each new population is termed a generation or epoch). Conver-
gence is often arbitrary judged and is defined to occur after the algorithm has completed a speci-
fied number of generations.

ALGORITHM DESIGN
A number of alternative forms of GA exist, the differences being in the encoding of the

problem variables as well as the form of GA operators. In this research, a problem-specific
GA is implemented using a problem-specific encoding of the problem variables together with
problem-specific fitness assignment, recombination, and mutation operators.

Problem Variable Encoding
In GAs, the problem variables are encoded in data structures known as chromosomes. Both

integer and continuous variables are commonly encoded as a binary string (Goldberg 1989;
Bäck 1996; DeJong 2006). However, a binary chromosome datastructure is ineffective in the
solution of topological optimizations problems, the most effective representation for a topology
being an integer vector (Michalewicz and Fogel 2000). Since the problem space in this research
is mixed integer, a multichromosome datastructure has been implemented that consists of two
integer vector chromosomes, one each for the component set and system topology, and
real-value vector chromosomes for the airflow rate and component capacity variables (each load
condition being represented by a separate flow-capacity chromosome). The multichromosome
genome has been implemented in a generic and flexible manner (Wright et al. 2004; Zhang
2005), the most important feature of which is that each member chromosome can be associated
with its own unique set of recombination and mutation operators. This feature is important, not
only in that different search operators are required for integer and real-value chromosomes, but
also because separate operators can be developed to specifically exploit the characteristics of
each subproblem and improve the robustness and convergence rate of the GA (the subproblems
for the component set being topology, flow rates, and capacity).

The structure of the genome is described here by example (a formal definition of the genome
structure is given by Wright et al [2004] and Zhang [2005]). Figure 5 gives the genome for the
single-zone system illustrated in Figure 3. The component set chromosome is a simple integer
vector in which the integer values point to a component type—e.g., a value of 0 points to a
flow-diverting duct branch (known here as a Div or diverting T). Component types 1, 2, and 3 in
the example point to the flow-mixing duct sections (a Mix or mixing T), the heating coil, and the
cooling coils. The component set chromosome also contains pointers to the zone(s) and the
ambient environment (types 7 and 11, respectively). Strictly, these are not included in the prob-
lem variables, as they must always be included in the component set.

The topology chromosome is in the form of a modified adjacency matrix, the chromosome
structure being developed to limit the redundancy and duplication of topological connections that
are present in a conventional adjacency matrix. Each entry in the chromosome indicates a connec-
tion between two components and, in particular, the connection of the outlet of one component to
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the inlet of another component. The order of entries corresponds to the order of components given
in the component set chromosome. Since the example system has nine components, including the
zone and the ambient environment, the components are indexed in order of one to nine. However,
the topology chromosome is typically longer than the number of components, since the
flow-diverting duct branches have two outlets that must be connected to components (the connec-
tion for the second outlet being defined after the first set of connections). 

The topology chromosome can be interpreted by reference to the component set chromosome.
For example, the first entry in the topology chromosome has a value of nine, this indicates that
the first outlet of Component 1 is connected to the inlet of Component 9. The component set
chromosome indicates that Component 1 is of Type 0 (a diverting T) and that Component 9 is of
Type 11 (ambient); hence, the first outlet of the diverting T is connected to the ambient (as in
Figure 3). The outlet of the ambient environment is in turn connected to Component 7, which,
from the component set chromosome, is of Type 3, a cooling coil. The connection of the second
outlet of Component 1 (diverting T), is specified by the tenth entry in the topology chromosome.
This indicates that the second outlet is connected to Component 2, which, from the component
set, is also of Type 0, another diverting T.

The airflow rate and component capacity control variables are encoded in nl real value chro-
mosomes, with each chromosome representing the control values for a single load condition (nl
being the number of load conditions). The flow-capacity chromosomes are in two parts, the first
section being for the air-mass flow rates and the second part being for the component capacities.
The component capacities are given in the order of heating coils, cooling coils, and steam
humidifiers. The example system has one heating coil, two cooling coils, and no humidifiers
(Figure 3), giving three capacities to be controlled at each load condition. The three capacities in
the example flow-capacity chromosome (Figure 5), therefore, correspond to the heating coil

Figure 5. Example genome.
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(component index 5 of the component set chromosome) and the two cooling coils (having corre-
sponding component set indexes of 6 and 7).

Although we seek to assign all air-mass flow rates in the system, it is only necessary to con-
trol a subset of the flow rates; the remaining flow rates are determined from the flow-mixing or
flow-diverting process models. The number of flow rates that must be set is equal to nmix + 1,
where nmix is the number of air-mixing or air-diverting components. The example genome
(Figure 5) indicates that, for the example system (Figure 3), there are three airflow rate control
variables (there being two air-mixing sections). The first of the air-mass flow rates of the chro-
mosome is always the ambient airflow rate at inlet to the system1. The choice of the remaining
two flow rates and their corresponding duct sections is determined through a graph-theoretic
tree-growing algorithm (Wright et al. 2004; Zhang 2005).

Problem Variable Definition. There are three groups of problem variables encoded in three
types of chromosome: the component set, the system topology, and the airflow rate and compo-
nent capacity control variables. The problem variables can be formally defined as follows:

X = (Xset, Xtop, Xcon) (1)

where Xset, Xtop, and Xcon are the component set, topology, and control variables, respectively,
such that

 , (2)

where
nset = the number of component set variables,

ntop = the number of topology variables, and

ncon = the number of control variables.

The number of topology variables is a function of the number of components; number of air
mixing components, ncomp; and number of air mixing components, nmix. The number of control
variables is a function of the number of heating coils, nheat; the number of cooling coils, ncool;
the number of humidifiers, nhumid; the number of air-mixing sections, nmix; and the number of
load conditions, nload, as follows:

(3)

Fitness Assignment

The fitness of a solution is a measure of its optimality as compared to the other solutions in
the population. Since the optimization problem considered here is a constrained optimization
problem, the fitness of a solution is a function of the constraint values as well as the objective
function value. 

1.  In this research, it is assumed that the exhaust airflow rate equals the inlet airflow rate.

Xset xset 1,
… xset nset,, ,( ) Z

nset∈=

Xtop xtop 1,
… xtop nset,, ,( ) Z

ntop∈=

Xcon xcon 1,
… xcon nset,, ,( ) ℜ

ncon∈=

ntop ncomp nmix,+=

ncon nload nheat ncool nhumid nmix 1+ + + +( )×=
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Objective Function Formulation. In this research, the objective function, f(x), the value of
which is to be minimized, is the system annual energy consumption. Since a separate
flow-capacity chromosome is required for each load condition, it is impracticable to optimize
the system operation for every hour of the year (as the resulting number of problem variables
would make the problem difficult to solve). Therefore, in this research, the annual energy use is
approximated using a weighted sum of the component capacities over a limited number of load
conditions as follows:

(4)

where
wi = the weight for load condition i

= the capacity of component j at load condition i
Wfan,i = the total fan power at load condition i
nh+c+h= nheat +ncool + nhumid = (the sum of the number of heating coils, cooling coils, and humidifiers)
nload = the number of load conditions

The total fan power is calculated as a function of the pressure loss and airflow rates through
each component and a notional length of ductwork. 

The weights are formulated such that  and, as such, the objective function is a

weighted average of the capacities over the load conditions. In the example optimization prob-
lems studied in this research (Wright and Zhang 2008), the annual energy performance is
approximated from nine load conditions. The nine loads conditions approximate to morning,
early afternoon, and early evening operation in each of three seasons, winter, summer, and a
transition season.

Constraint and Infeasibility Functions. As well as each problem variable being constrained
in a specified range of values, there are three sets of problem constraints as follows: 

1. Constraints on the viability of the system topology
2. Constraints on the procedure for evaluating the system performance
3. Constraints on the system operation 

The topology constraints are concerned with ensuring that system components are connected
in a manner that enables feasible operation. The topology is defined by a directed graph, which
must be strongly connected to ensure that air can be circulated between any two of the compo-
nents in the system (the ambient environment and zone(s) being considered as components in
the system). The occurrence of ineffective structures in the system is also constrained; these
structures are associated with the circulation of air in the duct system that do not result in a
change in the air condition—e.g., an airflow being split in a duct branch only to be merged again
immediately downstream. Each of the topology constraints is represented as an equality con-
straint (a binary constraint with a value [0, 1]). The topology constraint violations are aggregated
to give a single normalized value of the violation. The aggregated value is in the range 0.0 to 1.0
with a value of zero indicating a feasible topology.

The system performance evaluation constraints are concerned with identifying failure in the
evaluation of system performance. This can occur for overly complex systems or when the
procedure for assigning airflow rates to particular branches results in insolvable airflows. The

min f X( ) wi Q· i j, Wfan i,+
j 1=

nh c h+ +

∑
i 1=

nload

∑=

Q·
i j,

wi
i 1=

nload

∑ 1.0=
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performance evaluation constraints are also aggregated and normalized to be in the range 0.0
to 1.0 (0.0 indicating complete feasibility).

 The system operating constraints are concerned with ensuring that all components operate
within their performance limits and that the system is able to maintain the desired zone condi-
tions (the zone constraints being on the amount of outside air entering the zone and the tempera-
ture and humidity of the supply air entering each zone). The operation constraints are in the form
of both inequality and equality constraints, although a reasonable engineering tolerance has been
applied to the equality constraints. The system performance and operation constraints have also
been aggregated to have a value in the range 0.0 to 1.0 (0.0 indicating complete feasibility). 

Note that, although there are three groups of constraints (topology constraints, performance
evaluation constraints, system operation constraints), the system performance can only be evalu-
ated if a feasible topology exists. Similarly, the value of the system operating constraints can
only be calculated if the system performance evaluation has been successfully completed. The
discontinuity of the constraint space is reflected in the formulation of the infeasibility function.
If ctop(Xset, Xtop), cev(X) and cop(X) are the aggregated constraint values for the topology, system
performance evaluation, and system operating constraints, respectively, then the system infeasi-
bility i(X), is given as follows:

(5)

The infeasibility function in Equation 5 gives three bands of infeasibility: infeasible topolo-
gies result in an infeasibility value in the range 0.9 to 1.0, failure to evaluate the system perfor-
mance results in a value in the range 0.45 to 0.9, and infeasible system operation results in a
value in the range >0.0 to 0.45. Note that the choice of banding should not impact the perfor-
mance of the search when the fitness is based on a rank order of the solutions, as in the case of
this research.

Stochastic Ranking. The fitness of a solution in the population is a function of its objective
function and infeasibility values compared to the values for all other solutions in the population.
The fitness assignment adopted here is based on the stochastic ranking procedure (Runarsson
and Yao 2000), one of the most robust fitness assignment algorithms for constrained optimiza-
tion. The procedure rank orders the solutions with, for this minimization problem, the lowest
ranked solution being the fittest. The ranking is achieved by a probabilistic bubble sort, with the
comparison of two solutions during the sort being made on either the objective function values
or the infeasibility values. If both solutions are feasible, then the comparison is always made on
the objective function values. However, if one or more of the solutions in the comparison is
infeasible, then the choice as to whether the two solution are compared on their objective or
infeasibility values is decided probabilistically (the probability of the comparison being made on
the degree of infeasibility being a parameter of the method). This ensures that, during the early
stages of the search, the search direction is not overly biased by the need to find a feasible solu-
tion and that, for example, slightly infeasible low objective function value solutions have some
chance of influencing the search direction.

Fitness “Ageing.” During development of the GA, it was observed that, although the syn-
thesized systems had an energy consumption comparable to established system configura-
tions, the synthesized systems were suboptimal. An analysis of the algorithm behavior with
respect to the exploration of different topologies indicated that the search could become dom-
inated by a single topology from an early stage of the search. This led to the introduction of a

i X( )

0.9 0.1ctop Xset Xtop,( )       if(ctop Xset Xtop,( ) 0.0 )>,+

0.45 0.45cev X( )      else if(cev X ) 0.0>( ),+

0.45cop X( )            else,⎩
⎪
⎨
⎪
⎧

=
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new algorithm operator that penalizes the fitness of solutions that have the dominant topol-
ogy. The penalty or ageing function is given by the following: 

(6)

where
j(.) = the fitness of a solution

= the solution’s fitness after ageing
ne = the number of times the solution’s topology has been evaluated
q = the maximum number of evaluations per generation allowed for a given topology
ng = the number of generations to date

The effect of the function is that, provided the number of evaluations to date (ne) is less than the
maximum allowed for the current generation (q × ng), the fitness remains unchanged. If, however,
the number of evaluations exceeds the maximum allowed, then the fitness function value is
increased by a factor equal to the number of evaluations in excess of the limit (ne – q × ng). Note
that, in this optimization problem, the fitness is minimized since we seek to minimize the objective
function value. Implementation of the ageing operator led to an order of magnitude increase in the
number of topologies explored during the search and, as a result, a significant improvement in the
optimality of the synthesized systems (Wright and Zhang 2005).

Selection
Solutions are selected for recombination and mutation using the established tournament selec-

tion operator (Bäck 1996; DeJong 2006). Tournament selection operates by randomly sampling
n solutions from the population, the winner of the tournament and solution used in recombina-
tion being the solution with the highest fitness (the other n-1 solutions are rejected). 

Recombination
Recombination is a process by which problem variable values from two chromosomes are

used to produce one or more new chromosomes. In this research, the problem variables have
been encoded in three distinct groups of chromosome (the component set, the system topology,
and the control variables). Not only does this enable the handling of both discrete and continu-
ous problem variables, but also allows separate problem-specific search operators to be applied
to each type of chromosome. In the case of the topology and flow-capacity chromosomes, sev-
eral different recombination operators have been developed and grouped into a hyperoperator in
which the choice of operator applied during a particular recombination operation is decided
probabilistically (the probability associated with a particular operator has been determined here
by small-scale trials of the algorithm).

Component Set Chromosome Recombination. The simplest form of recombination for an
integer chromosome is to randomly select a fixed number of problem variables and swap their
values in each of the two chromosomes to produce two new chromosomes (this is known as
N-point crossover). However, in this research, the number of components and, therefore, chro-
mosome length can vary between solutions in the population. Since the length of two selected
chromosomes can be different, simply swapping the variable values is ineffective, as part of the
longer chromosome would remain unchanged. The effectiveness of this simple recombination is
also limited by the fact that the order of components is fixed in each chromosome and, hence, an
N-point recombination may result in the same component types being swapped with no change
to the chromosome. In this respect, a new recombination approach has been implemented in
which the components found in each chromosome are pooled and then redistributed to create
two new chromosomes (Wright et al. 2004; Zhang 2005).

j ' .( ) j .( ) max ne q ng×–( ) 1.0,[ ]×=

j ' .( )
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System Topology Chromosome Recombination. The topology chromosome has been
implemented to ensure that the topology conforms to the valence rules for a HVAC system, spe-
cifically that each component outlet is connected to the inlet of one other component. Although
the valence restriction reduces the size of the topology search space, this remains large and is the
order of the following (Zhang 2005):

(7)

where ncomp is the total number of components and nmix the number of flow-mixing (or diverting)
components. For example, even the simple nine-component, two-flow-mixing section system in
Figure 3 has a total search space of 9.97×106 solutions. Further, although the form of topology
chromosome satisfies the system valence rules and in effect reduces the search space, there is no
guarantee that a randomly generated chromosome will satisfy all of the topology constraints. An
experimental investigation indicated 99% of randomly generated chromosomes will fail to satisfy
one or more of the topology constraints (Zhang 2005). Given this, there is a need to implement
recombination operators that tend to preserve the feasibility of a topology. Two recombination
operators have been implemented in this research: partially matched crossover and adjacent com-
ponent crossover. Partially matched crossover is an established operator that is effective in creat-
ing new topologies but can result in an unconnected system. Adjacent component crossover
addresses this problem in that it tends to create new topologies that remain connected but, as a
result, the exploratory power associated with this operator is reduced. In this respect, both opera-
tors have been implemented as part of the hyper-recombination with a 0.1 probability that par-
tially matched crossover will take place, compared to a 0.9 probability for the adjacent
component crossover (the result being that, in general, the topology recombination preserves the
system connectivity but that recombination maintains a degree of its exploratory power). 

Partially matched crossover is described in standard texts (Goldberg 1989), whereas adjacent
component crossover is described here in relation to the topology given in Figure 6 (which illus-
trates two similarly connected systems, A and B). The number associated with each component
in Figure 6 indicates the component index in the component set. Adjacent component crossover
operates by selecting a feature that is present in both topologies (in this case, the feature is a
flow-mixing section). The components next to the selected feature are then compared and, if
they are different but components of each type exist somewhere in each topology, then they are
swapped to produce two new topologies (in this case, A’ and B’).

Airflow Rate and Component Capacity Chromosome Recombination. Five methods of
recombination have been implemented for the airflow rate and component capacity chromo-
somes, four of which are established methods a the fifth a problem-specific method. The four
established methods are the center-of-gravity crossover, blend crossover, arithmetic crossover,
and N-point crossover (N-point). Blend crossover, arithmetic crossover, and N-point operators
are described in Deb (2001), and the center-of-gravity crossover is described by Angelov
(2001). As for the case of the N-point topology crossover, the N-point flow-capacity crossover
creates new chromosomes by simply swapping the variable values of two selected (parent) chro-
mosomes. However, blend crossover, arithmetic crossover, and center-of-gravity crossover, all
generate new variable values that are based on the interval between the two parent variable val-
ues. In the case of arithmetic crossover and center-of-gravity crossover, the new variable values
lie within the range of the two parent values, whereas they can lie outside of this range for blend
crossover. All four recombination operators are included in a hyper-recombination operator,
with the choice of which form of recombination is executed being determined probabilistically

O
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2
nmix

--------------------------------------
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(the probabilities of use for each operator have been set to 0.25 for center-of-gravity crossover,
0.6 for arithmetic crossover, 0.1 for blend crossover, and 0.05 for N-point).

In addition to the four conventional recombination operators, a problem-specific, selective
chromosome crossover has been developed and implemented. Rather than operate at the level of
individual variables, selective chromosome crossover operates on the whole chromosome. Each
operating condition is associated with a separate flow-capacity chromosome, separate energy
use (the objective function), and degree of feasible operation (as represented by Equation 5 and,
in particular, cop(X)). Where the two selected (parent) chromosomes have an identical system
configuration2, then the flow-capacity chromosomes for each load condition can be compared
directly and used to form a new genome consisting of the best flow-capacity chromosomes
found in either of the two parents. The best chromosome at a given load condition is determined
by comparing the infeasibility and objective function values, with the choice of the best chromo-
some being made on infeasibility when both solutions are infeasible or on the objective function
value when both solutions are feasible; if only one of the pair is feasible, it is taken as the best
solution. The result of this operator is that the new solution should have better overall perfor-
mance than either of the two parent solutions.

Mutation

Solutions resulting from the recombination process are mutated in order to maintain the
exploratory power of the search (mutation in effect being a disruptive operator that has the
potential to change the search direction). As for the recombination operators, several mutation
operators, including problem-specific operators, have been implemented in a hypermutation
operation for each type of chromosome. The probability of a particular mutation operator being
used within the hyperoperator has been determined by small-scale trials of the algorithm.

2. A configuration consists of a component set and system topology (that is, the choice of components and their connections).

Figure 6. Example of adjacent component crossover.



VOLUME 14, NUMBER 1, JANUARY 2008 47
Component Set Chromosome Mutation. The most commonly used form of mutation oper-
ates by probabilistically selecting a problem variable from a chromosome, the value of which is
then changed by a random amount. This simple approach has been modified in this research to
ensure that the number of each component type found in the system can be controlled and that
practicable restrictions can be placed on the types of component included in the system.

System Topology Chromosome Mutation. Three topology chromosome operators have
been implemented: a random initialization mutation, a link swap mutation, and a component
swap mutation. Random-initialization mutation randomly reinitializes the topology chromo-
some and, in effect, seeds the search with a completely new topology. Link-swap mutation
swaps two of the component outlet links, the outlet links being defined by integer problem vari-
ables in the topology chromosome. For example, Figure 7 illustrates a six-component system
that includes one flow-mixing section and gives a topology chromosome length of seven prob-
lem variables. The number 5 for the third entry in the original chromosome indicates that Com-
ponent 3 is linked to Component 5. The last entry in the topology chromosome is for the
connection of the second outlet of the mixing section (Component 1), which, in this case, is con-
nected to Component 6. In the example given in Figure 7, swapping the links results in a new
topology but one that is poorly connected, as there is no flow path from Components 2, 3, 4, and
6 to Components 1 and 4. This potential for poorly connected topologies resulting from muta-
tion is addressed in component-swap mutation.

Component-swap mutation swaps the position of a flow-mixing or flow-diverting component
with another component in the system in a manner that preserves the connectivity of the system.
Figure 8 illustrate a system in which the position of a flow-diverting Component 1 is swapped
with Component 3 to produce a new system topology. Component-swap mutation is more likely
to result in a connected system but has less exploratory power than link-swap mutation. All three
topology mutation operators are included in a hyper-mutation operator, with the probabilities of
a particular mutation occurring being set to 0.06 for the random-initialization mutation, 0.31 for
the link-swap mutation, and 0.63 for the component-swap mutation.

Airflow Rate and Component Capacity Chromosome Mutation. Three mutation operators
have been implemented for use with the flow-capacity chromosomes, two of which are estab-
lished operators with the third being a new problem specific operator. The two established oper-
ators are a random mutation and a Gaussian mutation; the problem specific operator is known as

Figure 7. Example link-swap mutation.



48 HVAC&R RESEARCH
the flow-capacity reduction mutation. Random mutation probabilistically changes the problem
variable values by a random amount. Gaussian mutation gives more control over this operation
by changing the problem variable value according to a Gaussian distribution (the shape of the
distribution being defined by a standard deviation). 

The flow-capacity reduction mutation is a problem-specific operator that addresses the goal
of minimizing the system energy use by reducing the airflow rates by a small fraction and set-
ting randomly selected component capacities to zero (the airflow rates are not set to zero as there
will almost certainly be some airflow through most branches of the system).

In a manner similar to the other recombination and mutation operators, the three flow-capac-
ity operators are combined in a hypermutation with the probability of a particular method being
used of 0.25 for the random mutation, 0.25 for the Gaussian mutation, and 0.5 for the
flow-capacity reduction mutation.

Replacement
A new population of solutions is created by successively replacing the existing solutions with

newly recombined and mutated solutions. However, in order to ensure that the search does not
converge towards a solution that is inferior to the best solution found to date, the top few percent
of the best ranked solutions are carried forward to the next population without any modification
(the population overlap being a form of so called “elitism”). 

ALGORITHM PERFORMANCE
The performance of the EA is examined here in terms of the effect of the different algorithm

operators on both the optimality of the solutions and the exploratory power of the search. The
performance of the algorithm in terms of the characteristics and optimality of the solutions is
examined in an associated publication (Wright and Zhang 2008). Since the EA is a probabilistic
search method, its performance has been examined using 16 separate trial optimizations. The
results of the trial optimizations are reported as the average of the best solutions found at each
iteration (epoch) of the algorithm together with the solutions found on completion of the optimi-
zation. The algorithm control parameter values used in this study are given in Table 1. The
parameter values have either been taken as the generally accepted values or derived from
small-scale trials of the behavior of the algorithm as follows: 

• Large population sizes, often in excess of 1000 individuals, are required for an effective
search of large topological search spaces (Koza et al. 2003). 

• Since the solutions are rank ordered in terms of their fitness, a population of 1000 and a 2%
overlap of solutions will result in the top 20 ranked individuals being copied directly to the
next generation. 

Figure 8. Example component-swap mutation.
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• A 1-from-2 tournament selection provides sufficient selection pressure to move the search
towards the fittest solutions without resulting in premature convergence. 

• A high probability of crossover is commonly used in topological optimization problems (typ-
ically 100%) (Koza et al. 2003). However, a 100% topology crossover was found to be too
disruptive, often resulting in infeasible solutions. A lower rate of 50% probability was found
to give good algorithm performance. 

• Similarly, a high mutation rate on the topology chromosomes was found to result in poor con-
vergence on a feasible solution and, therefore, was assigned a lower value than that for the air-
flow rate and component-capacity chromosomes. 

• The control parameter for the stochastic ranking fitness was taken as that reported by the algo-
rithm’s authors (Runarsson and Yao 2000). 

• Since the ageing operator (Wright and Zhang 2005) was developed as part of this research, no
previous guidelines exist for the choice of control parameter. A comprehensive study of the
operator is beyond the scope of this research; however, a value of 20 appears to give good
algorithm performance. A value of 20 indicates that any topology having a cumulative total
number of solutions greater than 20 per generation will have its fitness penalized. The experi-
mental results indicate that this rate (equivalent to 2% of the population) is sufficient for the
topology to evolve.

Example Optimization Problem
The example system used to evaluate the algorithm serves two zones of a building located in

Oklahoma City, USA (a location that experiences a largely continental climate). The building
and associated load conditions are described in two related publications, Wright et al. (2004) and
Wright and Zhang (2008). The annual system operation is represented by nine load conditions
within which five different operating regimes occur (Table 2). 

Two groups of experiments are performed here, one that includes the optimization of the
component set and a second group in which the component set is fixed. For the case in  which
the component set is optimized, it is difficult to describe the complexity of the problem space
since it is a direct function of the component set, this being a variable of the optimization.

Table 1. EA Control Parameters

Operation Control Parameter Value

Population

Population size 1000

Maximum generations 10,000

Population overlap 2%

Selection (Tournament Selection) Tournament type 1-from-2

Hyper-crossover

Topology probability 50%

Airflow rate and component capacity
probability

100%

Hypermutation

Topology probability 2%

Airflow rate and component capacity
probability

10%

Fitness (Stochastic Ranking) Probability of infeasible solution ranking 45%

Ageing Maximum evaluations per generation 20
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However, the complexity of the search space can be described for the case when the compo-
nent set is fixed. The fixed component set used in this study consists of 17 components: two
zones, two heating coils, two cooling coils, two humidifiers, four air-mixing sections, four
air-diverting sections, and the ambient environment. This results in a topology search space
that is in the order of 3.2×1019 alternative topologies. The component set also results in 21 dis-
crete variables encoded in a single topology chromosome, six component capacity variables,
and five airflow-rate variables for each of the nine boundary conditions (giving 99 continuous
variables encoded in nine separate flow-capacity chromosomes). 

The number of constraints is also a function of the component set. For the fixed component
set experiments, there are ten equality constraints on the feasibility of the topology, one equality
and nine inequality constraints on the evaluation of system performance, and 108 inequality
constraints on the operation of the system components (for each boundary condition, these con-
straints relate to the lowest feasible temperature leaving the cooling coils and humidifiers and
the supply air temperature and airflow rates entering the zones). Further, for each boundary con-
dition, the quantity of outside air entering each zone is constrained by an inequality constraint,
and the supply-air temperature and humidity are constrained by equality constraints (the equality
constraints are subject to a small tolerance). Given nine boundary conditions, this results in a
total of 54 zone constraints (18 inequality and 36 equality constraints). 

In summary, for the fixed component set, there are a total of 120 problem variables (21 dis-
crete and 99 continuous), and the problem is constrained by 135 inequality constraints and 55
equality constraints.

Results
The experimental results are given in Figures 9–11 and Table 3. First consider the results

labeled component set optimized and hyperoperators and ageing. Both of these results are for
the full implementation of the algorithm, the difference in the two results being that the compo-
nent set was optimized for the results labeled component set optimized but was fixed for the
results labeled hyperoperators and ageing. Optimizing the component set results in average
infeasibility and objective function values that are of the same order of magnitude as when the
component set is fixed. However, after 10,000 iterations (epochs) of the algorithm, only 19% of
the solutions were feasible when the component set was optimized, as compared to 81% when
the component set was fixed (Table 3). This characteristic is mirrored in Figure 9, which shows
the mean infeasibility of the best solutions in all 16 trial optimizations at each iteration (epoch).
There is little difference between the results for the early generations, but the mean infeasibili-
ties begin to diverge at approximately 100 generations, with the optimization for the fixed com-
ponent set (the hyper and ageing curve) ultimately having the lowest infeasibility. Note that, for
all infeasible solutions found here, the infeasibility is largely due to the system being unable to
meet the required supply-air conditions at one or more load conditions. This characteristic

Table 2. System Operating Regimes

Zone

East West

Heating Heating

Heating Cooling

Heating Free cooling

Free cooling Free cooling

Cooling Cooling
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maybe a function of the equality constraints on the supply-air conditions. In this respect, an
alternative approach that does not require the use of equality constraints has been suggested
(Sowell 2002) but not implemented.

Optimization of the component set results in a significantly lower objective function value
during early generations (compare the component set and hyper and ageing curves in Figure 10).
This characteristic suggests that the possible cause of the low probability of finding a feasible
solution during the component-set optimization may be due to the low objective function values
in the early part of the search overdominating the search direction and preventing the search
from finding feasible solutions (which probably requires higher energy use). Given the low
probability of finding a feasible design solution when the component set is optimized, the deci-
sion was made to fix the component set in all subsequent optimization studies performed during
this research. The principle developed in fixing the component set was that there should be a
sufficient number of components of each type to allow the synthesis of dedicated subsystems for

Table 3. Value of Best Solutions at the Final Epoch

Performance Metric

Component Set Fixed
Component Set 

OptimizedConventional 
Operators

Hyperoperators
Hyperoperators

and Ageing

Probability
of Feasibility, %

6 44 81 19

Mean Infeasibility of 
Infeasible Solutions, –

9.4×10–3 2.8×10–4 3.2×10–5 8.3×10–5

Mean Objective, kW 8.6 12.6 8.6 11.5

Figure 9. Solution infeasibility.
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Figure 10. Number of topologies explored.

Figure 11. Solution objective function value.



VOLUME 14, NUMBER 1, JANUARY 2008 53
the conditioning of each zone; that is, the number of heating coils, cooling coils, and humidifiers
should be no less than the number of zones. Several air-mixing and air-diverting sections should
also be included to allow the synthesis of suitable air-mixing paths.

Having fixed the component set, further experiments were performed to examine the effect of
the problem-specific and ageing operators on the performance of the search. Three sets of exper-
iments were performed, one for the algorithm configured to use conventional search operators; a
second set with the algorithm configured to use the hyper-recombination and mutation opera-
tors; and finally, a third set with the algorithm using both the hyperoperators and the ageing
operator. The conventional recombination and mutation operators used here are the N-point
crossover for the topology chromosomes, blend crossover for the flow-capacity chromosomes,
and a random mutation for both the topology and flow-capacity chromosomes.

Table 3 indicates that the most significant effect of the hyperoperators and ageing is on the
probability of finding a feasible solutions, which increases from just 6% for the conventional
search operators to 81% for the hyperoperators with ageing. Further, Figure 9 illustrates that
very little improvement in the mean infeasibility of the best solutions is made after the first 100
generations when conventional search operators are used. Conversely, the hyperoperators and
ageing allow the search to continue towards more feasible solutions, the highest rate of reduc-
tion being for the hyperoperators with ageing. 

Figure 10 illustrates the increase in the number of topologies searched with each epoch. The
most significant result is the effect of the ageing operator in increasing the number of topologies
searched, which is responsible for the high probability of finding a feasible solution (that is, a
topology that can provide the required supply-air conditions). Surprisingly, optimizing the com-
ponent set reduces the number of alternative topologies searched, due perhaps to changes in the
component sets restricting the development of a search through a particular subset of topologies.

Finally, for the fixed component set optimization, the behavior of the search in the objective
function domain was generally unaffected by the choice of different search operators (Figure 11). 

It could be concluded that the development of problem-specific search operators implemented
as part of a probabilistic hyperoperation together with the new ageing operator significantly
improves the performance of the optimization, particularly in terms of the probability of finding
a feasible solution. However, the algorithm was unable to simultaneously optimize the compo-
nent set, topology, and system operation, which resulted in the use of a fixed component set in
subsequent optimization studies (Wright and Zhang 2008).

CONCLUSIONS
The synthesis of novel HVAC system configurations can be formulated as a model-based

numerical optimization problem. There are three suboptimization problems associated with
design of HVAC system configurations: the selection of the component set, the design of the
topological connections between the components, and design of a system control strategy. The
approach adopted in this research is to simultaneously solve all three suboptimization problems. 

In an attempt to reduce the computation time associated with simulating the system perfor-
mance, the component performance models have been simplified and the solution of the system
performance equations integrated into the optimization problem (as a set of equality constraints
on the supply-air conditions). Further, rather than attempt to automatically design a novel con-
trol system for each new synthesized system configuration, the control variables have been
incorporated directly into the optimization, such that the optimization algorithm acts as an opti-
mum controller.

The optimization problem has been solved using an EA—in particular, the GA subclass. GAs
lend themselves to the solution of system synthesis optimization problems in that they can be
configured to solve multimodal, nonlinear, highly-constrained, topological optimization prob-
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lems of high dimensionality. In particular, GA can be designed to have separate data structures
and search operators for each of the optimization subproblems (component set, system topology,
and system operation). Designing and implementing separate problem-specific search operators
for each subproblem increases the effectiveness and robustness of the algorithm. In this
research, several such problem-specific search operators have been implemented. A new search
operator was also developed to increase the effectiveness of the algorithm in exploring the topo-
logical search space.

The performance of the algorithm has been examined here in terms of the effect of the various
search operators on the performance of the algorithm, particularly with respect to the probability of
finding a feasible design solution. The performance of the algorithm and optimality of the synthe-
sized HVAC systems is further examined in an associated publication (Wright and Zhang 2008). It
can be concluded that the algorithm is unreliable in finding feasible design solutions when the
component set, system topology, and system operation are simultaneously optimized. However,
when the component set is fixed (as a boundary condition on the optimization) then the algorithm
is able to find feasible system configurations with an 81% probability.3 The probability of finding
feasible solution was significantly improved by the design of the problem-specific and novel
search operators. It can be concluded that, given a candidate set of system components, the algo-
rithm provides a suitable tool for exploring the novel design of HVAC systems.
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