8 research outputs found

    Design of neuro-swarming computational solver for the fractional Bagley–Torvik mathematical model

    Get PDF
    This study is to introduce a novel design and implementation of a neuro-swarming computational numerical procedure for numerical treatment of the fractional Bagley–Torvik mathematical model (FBTMM). The optimization procedures based on the global search with particle swarm optimization (PSO) and local search via active-set approach (ASA), while Mayer wavelet kernel-based activation function used in neural network (MWNNs) modeling, i.e., MWNN-PSOASA, to solve the FBTMM. The efficiency of the proposed stochastic solver MWNN-GAASA is utilized to solve three different variants based on the fractional order of the FBTMM. For the meticulousness of the stochastic solver MWNN-PSOASA, the obtained and exact solutions are compared for each variant of the FBTMM with reasonable accuracy. For the reliability of the stochastic solver MWNN-PSOASA, the statistical investigations are provided based on the stability, robustness, accuracy and convergence metrics.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This paper has been partially supported by Fundación Séneca de la Región de Murcia grant numbers 20783/PI/18, and Ministerio de Ciencia, Innovación y Universidades grant number PGC2018-0971-B-100

    Integrated computational intelligent paradigm for nonlinear electric circuit models using neural networks, genetic algorithms and sequential quadratic programming

    Full text link
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. In this paper, a novel application of biologically inspired computing paradigm is presented for solving initial value problem (IVP) of electric circuits based on nonlinear RL model by exploiting the competency of accurate modeling with feed forward artificial neural network (FF-ANN), global search efficacy of genetic algorithms (GA) and rapid local search with sequential quadratic programming (SQP). The fitness function for IVP of associated nonlinear RL circuit is developed by exploiting the approximation theory in mean squared error sense using an approximate FF-ANN model. Training of the networks is conducted by integrated computational heuristic based on GA-aided with SQP, i.e., GA-SQP. The designed methodology is evaluated to variants of nonlinear RL systems based on both AC and DC excitations for number of scenarios with different voltages, resistances and inductance parameters. The comparative studies of the proposed results with Adam’s numerical solutions in terms of various performance measures verify the accuracy of the scheme. Results of statistics based on Monte-Carlo simulations validate the accuracy, convergence, stability and robustness of the designed scheme for solving problem in nonlinear circuit theory

    Design of neuro-computing paradigms for nonlinear nanofluidic systems of MHD Jeffery–Hamel flow

    Full text link
    © 2018 Taiwan Institute of Chemical Engineers In this paper, a neuro-heuristic technique by incorporating artificial neural network models (NNMs) optimized with sequential quadratic programming (SQP) is proposed to solve the dynamics of nanofluidics system based on magneto-hydrodynamic (MHD) Jeffery–Hamel (JHF) problem involving nano-meterials. Original partial differential equations associated with MHD–JHF are transformed into third order ordinary differential equations based model. Furthermore, the transformed system has been implemented by the differential equation NNMs (DE-NNMs) which are constructed by a defined error function using log-sigmoid, radial basis and tan-sigmoid windowing kernels. The parameters of DE-NNM of nanofluidics system are optimized with SQP algorithm. To illustrate the performance of the proposed system, MHD–JHF models with base-fluid water mixed with alumina, silver and copper nanoparticles for different Hartman numbers, Reynolds numbers, angles of the channel and volume fractions with three different proposed DE-NNMs are designed to evaluate. For comparison purpose, the proposed results with reference numerical solutions of Adams solver illustrate their worth. Statistical inferences through different performance indices are given to demostrate the accuracy, stability and robustness of the stochastic solvers

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    International Conference on Mathematical Analysis and Applications in Science and Engineering – Book of Extended Abstracts

    Get PDF
    The present volume on Mathematical Analysis and Applications in Science and Engineering - Book of Extended Abstracts of the ICMASC’2022 collects the extended abstracts of the talks presented at the International Conference on Mathematical Analysis and Applications in Science and Engineering – ICMA2SC'22 that took place at the beautiful city of Porto, Portugal, in June 27th-June 29th 2022 (3 days). Its aim was to bring together researchers in every discipline of applied mathematics, science, engineering, industry, and technology, to discuss the development of new mathematical models, theories, and applications that contribute to the advancement of scientific knowledge and practice. Authors proposed research in topics including partial and ordinary differential equations, integer and fractional order equations, linear algebra, numerical analysis, operations research, discrete mathematics, optimization, control, probability, computational mathematics, amongst others. The conference was designed to maximize the involvement of all participants and will present the state-of- the-art research and the latest achievements.info:eu-repo/semantics/publishedVersio

    Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 274)

    Get PDF
    This publication is a cumulative index to the abstracts contained in supplements 262 through 273 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number
    corecore