237 research outputs found

    Three-dimensional ultrasound image-guided robotic system for accurate microwave coagulation of malignant liver tumours

    Full text link
    Background The further application of conventional ultrasound (US) image-guided microwave (MW) ablation of liver cancer is often limited by two-dimensional (2D) imaging, inaccurate needle placement and the resulting skill requirement. The three-dimensional (3D) image-guided robotic-assisted system provides an appealing alternative option, enabling the physician to perform consistent, accurate therapy with improved treatment effectiveness. Methods Our robotic system is constructed by integrating an imaging module, a needle-driven robot, a MW thermal field simulation module, and surgical navigation software in a practical and user-friendly manner. The robot executes precise needle placement based on the 3D model reconstructed from freehand-tracked 2D B-scans. A qualitative slice guidance method for fine registration is introduced to reduce the placement error caused by target motion. By incorporating the 3D MW specific absorption rate (SAR) model into the heat transfer equation, the MW thermal field simulation module determines the MW power level and the coagulation time for improved ablation therapy. Two types of wrists are developed for the robot: a ‘remote centre of motion’ (RCM) wrist and a non-RCM wrist, which is preferred in real applications. Results The needle placement accuracies were < 3 mm for both wrists in the mechanical phantom experiment. The target accuracy for the robot with the RCM wrist was improved to 1.6 ± 1.0 mm when real-time 2D US feedback was used in the artificial-tissue phantom experiment. By using the slice guidance method, the robot with the non-RCM wrist achieved accuracy of 1.8 ± 0.9 mm in the ex vivo experiment; even target motion was introduced. In the thermal field experiment, a 5.6% relative mean error was observed between the experimental coagulated neurosis volume and the simulation result. Conclusion The proposed robotic system holds promise to enhance the clinical performance of percutaneous MW ablation of malignant liver tumours. Copyright © 2010 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78054/1/313_ftp.pd

    Design and Development of a Surgical Robot for Needle-Based Medical Interventions

    Get PDF
    Lung cancer is the leading cause of cancer related deaths. If diagnosed in a timely manner, the treatment of choice is surgical resection of the cancerous lesions followed by radiotherapy. However, surgical resection may be too invasive for some patients due to old age or weakness. An alternative is minimally invasive needle-based interventions for cancer diagnosis and treatment. This project describes the design, analysis, development and experimental evaluation of a modular, compact, patient-mounted robotic manipulator for lung cancer diagnosis and treatment. In this regard, a novel parallel Remote Centre of Motion (RCM) mechanism is proposed for minimally invasive delivery of needle-based interventions. The proposed robot provides four degrees of freedom (DOFs) to orient and move a surgical needle within a spherical coordinate system. There is an analytical solution for the kinematics of the proposed parallel mechanism and the end-effectors motion is well-conditioned within the required workspace. The RCM is located beneath the skin surface to minimize the invasiveness of the surgical procedure while providing the required workspace to target the cancerous lesions. In addition, the proposed robot benefits from a design capable of measuring the interaction forces between the needle and the tissue. The experimental evaluation of the robot has proved its capability to accurately orient and move a surgical needle within the required workspace. Although this robotic system has been designed for the treatment of lung cancer, it is capable of performing other procedures in the thoracic or abdominal cavity such as liver cancer diagnosis and treatment

    SMART IMAGE-GUIDED NEEDLE INSERTION FOR TISSUE BIOPSY

    Get PDF
    M.S

    From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots

    No full text

    InterNAV3D: A Navigation Tool for Robot-Assisted Needle-Based Intervention for the Lung

    Get PDF
    Lung cancer is one of the leading causes of cancer deaths in North America. There are recent advances in cancer treatment techniques that can treat cancerous tumors, but require a real-time imaging modality to provide intraoperative assistive feedback. Ultrasound (US) imaging is one such modality. However, while its application to the lungs has been limited because of the deterioration of US image quality (due to the presence of air in the lungs); recent work has shown that appropriate lung deflation can help to improve the quality sufficiently to enable intraoperative, US-guided robotics-assisted techniques to be used. The work described in this thesis focuses on this approach. The thesis describes a project undertaken at Canadian Surgical Technologies and Advanced Robotics (CSTAR) that utilizes the image processing techniques to further enhance US images and implements an advanced 3D virtual visualization software approach. The application considered is that for minimally invasive lung cancer treatment using procedures such as brachytherapy and microwave ablation while taking advantage of the accuracy and teleoperation capabilities of surgical robots, to gain higher dexterity and precise control over the therapy tools (needles and probes). A number of modules and widgets are developed and explained which improve the visibility of the physical features of interest in the treatment and help the clinician to have more reliable and accurate control of the treatment. Finally the developed tools are validated with extensive experimental evaluations and future developments are suggested to enhance the scope of the applications

    ADVANCED IMAGING AND ROBOTICS TECHNOLOGIES FOR MEDICAL APPLICATIONS

    Get PDF
    Due to the importance of surgery in the medical field, a large amount of research has been conducted in this area. Imaging and robotics technologies provide surgeons with the advanced eye and hand to perform their surgeries in a safer and more accurate manner. Recently medical images have been utilized in the operating room as well as in the diagnostic stage. If the image to patient registration is done with sufficient accuracy, medical images can be used as &quot;a map&quot; for guidance to the target lesion. However, the accuracy and reliability of the surgical navigation system should be sufficiently verified before applying it to the patient. Along with the development of medical imaging, various medical robots have also been developed. In particular, surgical robots have been researched in order to reach the goal of minimal invasiveness. The most important factors to consider are determining the demand, the strategy for their use in operating procedures, and how it aids patients. In addition to the above considerations, medical doctors and researchers should always think from the patient&apos;s point of view. In this article, the latest medical imaging and robotic technologies focusing on surgical applications are reviewed based upon the factors described in the above. © 2011 Copyright Taylor and Francis Group, LLC.1

    Medical Ultrasound Imaging and Interventional Component (MUSiiC) Framework for Advanced Ultrasound Image-guided Therapy

    Get PDF
    Medical ultrasound (US) imaging is a popular and convenient medical imaging modality thanks to its mobility, non-ionizing radiation, ease-of-use, and real-time data acquisition. Conventional US brightness mode (B-Mode) is one type of diagnostic medical imaging modality that represents tissue morphology by collecting and displaying the intensity information of a reflected acoustic wave. Moreover, US B-Mode imaging is frequently integrated with tracking systems and robotic systems in image-guided therapy (IGT) systems. Recently, these systems have also begun to incorporate advanced US imaging such as US elasticity imaging, photoacoustic imaging, and thermal imaging. Several software frameworks and toolkits have been developed for US imaging research and the integration of US data acquisition, processing and display with existing IGT systems. However, there is no software framework or toolkit that supports advanced US imaging research and advanced US IGT systems by providing low-level US data (channel data or radio-frequency (RF) data) essential for advanced US imaging. In this dissertation, we propose a new medical US imaging and interventional component framework for advanced US image-guided therapy based on networkdistributed modularity, real-time computation and communication, and open-interface design specifications. Consequently, the framework can provide a modular research environment by supporting communication interfaces between heterogeneous systems to allow for flexible interventional US imaging research, and easy reconfiguration of an entire interventional US imaging system by adding or removing devices or equipment specific to each therapy. In addition, our proposed framework offers real-time synchronization between data from multiple data acquisition devices for advanced iii interventional US imaging research and integration of the US imaging system with other IGT systems. Moreover, we can easily implement and test new advanced ultrasound imaging techniques inside the proposed framework in real-time because our software framework is designed and optimized for advanced ultrasound research. The system’s flexibility, real-time performance, and open-interface are demonstrated and evaluated through performing experimental tests for several applications

    A systematic review of image-guided, surgical robot-assisted percutaneous puncture: Challenges and benefits

    Get PDF
    Percutaneous puncture is a common medical procedure that involves accessing an internal organ or tissue through the skin. Image guidance and surgical robots have been increasingly used to assist with percutaneous procedures, but the challenges and benefits of these technologies have not been thoroughly explored. The aims of this systematic review are to furnish an overview of the challenges and benefits of image-guided, surgical robot-assisted percutaneous puncture and to provide evidence on this approach. We searched several electronic databases for studies on image-guided, surgical robot-assisted percutaneous punctures published between January 2018 and December 2022. The final analysis refers to 53 studies in total. The results of this review suggest that image guidance and surgical robots can improve the accuracy and precision of percutaneous procedures, decrease radiation exposure to patients and medical personnel and lower the risk of complications. However, there are many challenges related to the use of these technologies, such as the integration of the robot and operating room, immature robotic perception, and deviation of needle insertion. In conclusion, image-guided, surgical robot-assisted percutaneous puncture offers many potential benefits, but further research is needed to fully understand the challenges and optimize the utilization of these technologies in clinical practice
    corecore