45 research outputs found

    The-state-of-the-art of soft robotics to assist mobility: a review of physiotherapist and patient identified limitations of current lower-limb exoskeletons and the potential soft-robotic solutions

    Get PDF
    Background: Soft, wearable, powered exoskeletons are novel devices that may assist rehabilitation, allowing users to walk further or carry out activities of daily living. However, soft robotic exoskeletons, and the more commonly used rigid exoskeletons, are not widely adopted clinically. The available evidence highlights a disconnect between the needs of exoskeleton users and the engineers designing devices. This review aimed to explore the literature on physiotherapist and patient perspectives of the longer-standing, and therefore greater evidenced, rigid exoskeleton limitations. It then offered potential solutions to these limitations, including soft robotics, from an engineering standpoint. Methods: A state-of-the-art review was carried out which included both qualitative and quantitative research papers regarding patient and/or physiotherapist perspectives of rigid exoskeletons. Papers were themed and themes formed the review’s framework. Results: Six main themes regarding the limitations of soft exoskeletons were important to physiotherapists and patients: safety; a one-size-fits approach; ease of device use; weight and placement of device; cost of device; and, specific to patients only, appearance of the device. Potential soft-robotics solutions to address these limitations were offered, including compliant actuators, sensors, suit attachments fitting to user’s body, and the use of control algorithms. Conclusions: It is evident that current exoskeletons are not meeting the needs of their users. Solutions to the limitations offered may inform device development. However, the solutions are not infallible and thus further research and development is required

    Highly Manoeuvrable Eversion Robot Based on Fusion of Function with Structure

    Get PDF
    Despite their soft and compliant bodies, most of today’s soft robots have limitations when it comes to elongation or extension of their main structure. In contrast to this, a new type of soft robot called the eversion robot can grow longitudinally, exploiting the principle of eversion. Eversion robots can squeeze through narrow openings, giving the possibility to access places that are inaccessible by conventional robots. The main drawback of these types of robots is their limited bending capability due to the tendency to move along a straight line. In this paper, we propose a novel way to fuse bending actuation with the robot’s structure. We devise an eversion robot whose body forms both the central chamber that acts as the backbone as well as the actuators that cause bending and manoeuvre the manipulator. The proposed technique shows a significantly improved bending capability compared to externally attaching actuators to an eversion robot showing a 133% improvement in bending angle. Due to the increased manoeuvrability, the proposed solution is a step towards the employment of eversion robots in remote and difficult-to-access environments

    Biomedical research and aerospace technology applications

    Get PDF
    The accomplishments and activities of an Applications Team for biomedical subjects are presented. The team attempts to couple the technological problems and requirements in medicine with the relevant aerospace technology and, in particular, NASA-generated technology. The team actively engages in identifying these problems through direct contact with medical staffs or problem originators. The identification and specification of medical problems is followed by a search for technology which may be relevant to solutions to these problems

    A soft matter computer for soft robots

    Get PDF

    Southwest Research Institute assistance to NASA in biomedical areas of the technology utilization program

    Get PDF
    The activities are reported of the NASA Biomedical Applications Team at Southwest Research Institute between 25 August, 1972 and 15 November, 1973. The program background and methodology are discussed along with the technology applications, and biomedical community impacts

    Evaluating footwear “in the wild”: Examining wrap and lace trail shoe closures during trail running

    Get PDF
    Trail running participation has grown over the last two decades. As a result, there have been an increasing number of studies examining the sport. Despite these increases, there is a lack of understanding regarding the effects of footwear on trail running biomechanics in ecologically valid conditions. The purpose of our study was to evaluate how a Wrap vs. Lace closure (on the same shoe) impacts running biomechanics on a trail. Thirty subjects ran a trail loop in each shoe while wearing a global positioning system (GPS) watch, heart rate monitor, inertial measurement units (IMUs), and plantar pressure insoles. The Wrap closure reduced peak foot eversion velocity (measured via IMU), which has been associated with fit. The Wrap closure also increased heel contact area, which is also associated with fit. This increase may be associated with the subjective preference for the Wrap. Lastly, runners had a small but significant increase in running speed in the Wrap shoe with no differences in heart rate nor subjective exertion. In total, the Wrap closure fit better than the Lace closure on a variety of terrain. This study demonstrates the feasibility of detecting meaningful biomechanical differences between footwear features in the wild using statistical tools and study design. Evaluating footwear in ecologically valid environments often creates additional variance in the data. This variance should not be treated as noise; instead, it is critical to capture this additional variance and challenges of ecologically valid terrain if we hope to use biomechanics to impact the development of new products

    Life Sciences Program Tasks and Bibliography for FY 1996

    Get PDF
    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1996. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page
    corecore