2 research outputs found

    Rancang Bangun Buoyant Boat Bertenaga Surya untuk Membantu Komunikasi antara Remotely Operated Vehicle Underwater Robot dengan Ground Station

    Get PDF
    Buoyant Boat merupakan wahana apung untuk membantu komunikasi antara ROV (Remotely Operated Vehicle) underwater robot dengan ground station. Komunikasi antara Buoyant Boat dengan ground station secara wireless meliputi kendali dan data, sedangkan dengan ROV melalui kabel berupa data, kendali, dan suplai daya. Komunikasi antara ROV dengan ground station ada dua cara, yaitu secara wireless dan melalui kabel. Namun, komunikasi wireless tidak pernah digunakan untuk observasi di perairan dalam. Hal ini karena terdapat redaman sinyal yang besar pada perbatasan air dengan udara. Oleh karena itu, dirancanglah Buoyant Boat yang menggunakan metode sistem komunikasi buoyant, dimana Buoyant Boat dapat membantu komunikasi dan suplai daya untuk ROV yang akan melakukan observasi dibawah air. Kendali menggunakan sepasang remote control dengan receiver dan komunikasi data menggunakan telemetri. Buoyant Boat memiliki tiga mode kendali, yakni sistem kendali manual, auto, dan loiter (atau lock location). Kebutuhan daya disuplai oleh tiga buah panel surya yang terpasang pada Buoyant Boat. Dari pengujian, didapatkan bahwa kontrol manual Buoyant Boat bekerja dengan baik. Pada mode auto, Buoyant Boat dapat melalui 3 titik koordinat yang ditentukan dengan kecepatan maksimal 1.37 Kmph. Dalam mode loiter, Buoyant Boat dapat kembali ke titik lock location ketika Buoyant Boat terbawa arus sejauh radius 2 meter. Tiga panel surya yang digunakan dapat menyuplai daya mulai pukul 06.09 WIB hingga 16.34 WIB. Panel surya yang digunakan menghasilkan daya total 82,8 W dengan efisiensi sebesar 27,6%. Realisasi Buoyant Boat memiliki dimensi 255 x 110 x 38 cm. ======================================================================================== Buoyant Boat is a floating vehicle to assist communication between ROV (Remotely Operated Vehicle) underwater robot with ground station. Buoyant boat with ground station is communicated by wireless which include control and data, while Buoyant Boat with ROV is connected by cable which consist control, data, and power supply. There are two ways communication between ROV and ground station, by wireless and through a wire. Nevertheless, wireless communication system never used to observed on the deep waters because there are high attenuation of a signal when cross the air-water boundary. Base on these problem, Buoyant Boat that used buoyant communication system has been developed to assist the communication and to suplai a power to ROV which will observe underwater. Control in this robot used a pair of remote control and receiver, while data communication is used a telemetri. Buoyant Boat have three modes control, that are manual, auto, and loiter (or lock location). Power needed is suplied by three photovoltaic that was installed on Buoyant Boat. Based on experiment, we know that manual control can work properly. In auto mode, Buoyant Boat can going through 3 point that have had set on the code program before with maximum speed 1.37 Kmph. On loiter mode, Buoyant Boat can back to the lock location when Buoyant Boat has moved as far as 2 meters from lock location. Three PV that was used, can powered from 06.09 AM until 04.34 PM. The three photovoltaic provided 82,8 W. It mean that photovoltaic has 27,6% of eficiency. Buoyant Boat have dimension length x width x high: 255 x 110 x 38 cm

    Design of small autonomous boat for course-keeping manuevers

    No full text
    This paper presents design, modeling and control of a small autonomous boat (SAB) where an Remote Control (RC) commercial boat is augmented with an embedded system and the required sensors in order to conduct simple maneuvers autonomously. The detailed kinematic and dynamic equations of the SAB are presented and simulation and experimental results for the boat heading control demonstrate the efficacy of SAB. 1 2017 IEEE.This publication was made possible by NPRP grants No. NPRP 5 - 045 - 2 - 017 and No. NPRP 6-463-2-189 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Scopu
    corecore