3 research outputs found

    Design of sliding-mode observer for a class of uncertain neutral stochastic systems

    Get PDF
    © 2016 Informa UK Limited, trading as Taylor & Francis Group. The problem of robust H∞ control for a class of uncertain neutral stochastic systems (NSS) is investigated by utilising the sliding-mode observer (SMO) technique. This paper presents a novel observer and integral-type sliding-surface design, based on which a new sufficient condition guaranteeing the resultant sliding-mode dynamics (SMDs) to be mean-square exponentially stable with a prescribed level of H∞ performance is derived. Then, an adaptive reaching motion controller is synthesised to lead the system to the predesigned sliding surface in finite-time almost surely. Finally, two illustrative examples are exhibited to verify the validity and superiority of the developed scheme

    Sliding mode observer design for decentralized multi-phase flow estimation

    Get PDF
    Robust flow measurement in multi-phase systems has extensive applications in understanding, design, and operation of complex environmental, energy and industrial processes. The nonlinearity and spatiotemporal variability of the interactions between different flow phases makes the multi-phase flow measurement a challenging task. Two Sliding Mode Observer (SMO) schemes are proposed in this study for the state estimation of a decentralized multi-phase flow measurement system. The developed observers are shown to be theoretically valid and numerically applicable for a real-life case study data. The multi-phase flow system considered in this paper can be described as two interconnected sub-systems including fluid and gas sub-systems, and two scenarios are considered in the design of the observers. The first scenario considers the interconnections as bounded disturbance (SMOD), while the second scenario considers the interconnections as an uncertainty (SMOU). Hence, the Sliding Mode Observers are adopted to mitigate the effects of disturbance in the system and uncertainties in the parameters. Numerical simulations are conducted using MATLAB and dynamic HYSYS simultaneously, using the data obtained from field-based multi-phase flow measurements. The results demonstrate the appropriateness and robustness of the proposed Sliding Mode Observer (SMO) for estimation of the multi-phase fluid specifications including the density, velocity, and the volume phases fraction in each subsystem. The analysis of the results highlights that the proposed model is computationally efficient with fast transient response, accurate tracking capability of the real process data, and very low steady-state error. This study shows that choosing an appropriate Lyapunov-Krasovsky function results in the asymptotic stability of the decentralized system and improves the performance of the proposed observers. Uncertainty analysis is conducted on the velocity estimation results obtained from the Sliding Observers. Overall, SMOU method shown better performance with RMSE of 0.24%, while RMSE of 0.46% was achieved for the SMOD. Comparison of the numerical results with the field-based flow measurement, as a benchmark, shows that although uncertainty in SMOU is approximately half of the uncertainty in SMOD, state estimation for both schemes was achieved in a finite time with high order of precision. It was shown that both observers developed in this study are well capable of estimating the multi-phase flow variables and states

    Development of adaptive control methodologies and algorithms for nonlinear dynamic systems based on u-control framework

    Get PDF
    Inspired by the U-model based control system design (or called U-control system design), this study is mainly divided into three parts. The first one is a U-model based control system for unstable non-minimum phase system. Pulling theorems are proposed to apply zeros pulling filters and poles pulling filters to pass the unstable non-minimum phase characteristics of the plant model/system. The zeros pulling filters and poles pulling filters derive from a customised desired minimum phase plant model. The remaining controller design can be any classic control systems or U-model based control system. The difference between classic control systems and U-model based control system for unstable non-minimum phase will be shown in the case studies.Secondly, the U-model framework is proposed to integrate the direct model reference adaptive control with MIT normalised rules for nonlinear dynamic systems. The U-model based direct model reference adaptive control is defined as an enhanced direct model reference adaptive control expanding the application range from linear system to nonlinear system. The estimated parameter of the nonlinear dynamic system will be placement as the estimated gain of a customised linear virtual plant model with MIT normalised rules. The customised linear virtual plant model is the same form as the reference model. Moreover, the U-model framework is design for the nonlinear dynamic system within the root inversion.Thirdly, similar to the structure of the U-model based direct model reference adaptive control with MIT normalised rules, the U-model based direct model reference adaptive control with Lyapunov algorithms proposes a linear virtual plant model as well, estimated and adapted the particular parameters as the estimated gain which of the nonlinear plant model by Lyapunov algorithms. The root inversion such as Newton-Ralphson algorithm provides the simply and concise method to obtain the inversion of the nonlinear system without the estimated gain. The proposed U-model based direct control system design approach is applied to develop the controller for a nonlinear system to implement the linear adaptive control. The computational experiments are presented to validate the effectiveness and efficiency of the proposed U-model based direct model reference adaptive control approach and stabilise with satisfied performance as applying for the linear plant model
    corecore