5 research outputs found

    Technology based learning system in Internet of Things (IoT) education

    Get PDF
    In this decade, Internet of Things (IoT) technologies are motivating nations for digital transformation. This transformation is part of Fourth industrial revolution (Industry 4.0). Several challenges are obstacle in the digitalization, one of them is talent in this field. There are not many available automation or control labs equipped with advance automation technologies in the educational institutions. To produce more force for IoT, engineering intuitions need to improve their curriculum and engineering lab facilities. In this paper, a technology-based learning system is proposed for learning IoT. The design of this system purposely developed for control lab for undergraduates and postgraduate students. This system offers a low-cost development using industrial standard controller, which is suitable for industrial and enterprise applications prototyping. Three modules are prepared to train the students; 1) Introduction to IoT & Industry 4.0, 2) controller programming, configuration and machine to machine (M2M) communication and 3) design and development of web and mobile applications. All students implemented and tested the industrial standard IoT application in the end of Session. The design and implementation result shows the learning experience of students has been improved and motivates the institutions to apply this low-cost system to fulfil the future talent demand in this field

    Bridging the gap between school and out-of-school science: A Making pedagogical approach

    Get PDF
    Making provides a beneficial learning environment that requires skills and knowledge from the areas of science, technology, engineering, and mathematics to design and construct a product or an artefact. In this paper the maker approach reflects on the pedagogical potential of learning through the design and deployment of an automated system that monitors and records environmental parameters in lakes and rivers. IoT technologies are used to connect schools with natural ecosystems, providing the opportunity to students to be actively involved in designing and developing technology artefacts to experiment with, and further, in the formulation of research questions, and in the processing and interpretation of research results and measurements. The study contributes to the research literature on bridging the gap between the school and out-of-school science

    Pain Points for Novice Programmers of Ambient Intelligence Systems: An Exploratory Study

    Get PDF
    This paper presents an exploratory study aimed at identifying the pain points that novice programmers experience, from the software engineering perspective, when developing and deploying smart and distributed systems, that may be classified as Ambient Intelligence (AmI) systems. The exploratory study was conducted among undergraduate students, that worked in groups for developing AmI projects during a university course. Based on their own experiences, individually and as a group, the pain points were identified and prioritized over a common architecture and a set of software development activities. The quantification of the pain points was based on the difficulty level that the students perceived on the development activities and the time they spent completing them. Results represent a starting point for the design of tools and methodologies targeted at overcoming the complexity that novice programmers face when developing AmI systems

    RANCANGAN SISTEM MONITORING SUHU DAN KELEMBAPAN RUANG SERVER BERBASIS INTERNET OF THINGS

    Get PDF
    Suhu dan kelembapan ruang server perlu dijaga sesuai dengan standar untuk menjamin server tidak mengalami gangguan atau kerusakan. Untuk mengetahui adanya permasalahan pada kondisi lingkungan dan mengantisipasinya lebih cepat maka faktor suhu dan kelembapan ruang server perlu dimonitor secara real time. Tujuan penelitian ini adalah membuat sistem monitoring suhu dan kelembapan ruang server secara real time yang hasilnya dapat diakses secara offline maupun online dengan memanfaatkan teknologi Internet of Things (IoT) berbasis modul NodeMCU ESP8266 dan sensor DHT11. NodeMCU ESP8266 dalam sistem monitoring berperan sebagai pengendali utama dengan tugas membaca data suhu dan kelembapan dari sensor DHT11 dan mengirimkannya ke penampil LCD karakter maupun ThingSpeak melalui koneksi jaringan internet wireless. Data akuisisi suhu dan kelembapan diambil secara kontinyu setiap jeda satu menit untuk selanjutnya dibandingkan dengan hasil pembacaan perangkat ukur standar Hygrometer HTC-1 guna mengetahui tingkat kesalahan rata-ratanya. Berdasarkan hasil penelitian diperoleh rata-rata kesalahan pembacaan suhu ruang server sebesar 2,0°C dan kelembapannya 3,1%RH.      ABSTRACT   The stable and reliable server operation is achieved by maintaining the server room’s humidity and temperature according to standards. Using a real-time monitoring system to record the two factors will ensure future error identification and give better anticipation. In this work real-time server room’s humidity and temperature monitoring system is designed to be accessible both online and offline using Node MCU ESP8266, DHT11, character LCD Display and Thing Speak. DHT11 sensor data are displayed in LCD while simultaneously transferred to the Thing Speak server through the wireless internet connection by Node MCU ESP8266. Acquisition data is sampled continuously in a one-minute sample rate for ten minutes and then recorded and compared with the standard Hygrometer HTC-1 to obtain the reading error rate of humidity and temperature. The result shows 2,3°C and 3,3%RH error rate for the server room’s temperature and humidity readings

    Experiences from Using Gamification and IoT-based Educational Tools in High Schools towards Energy Savings

    Full text link
    Raising awareness among young people, and especially students, on the relevance of behavior change for achieving energy savings is increasingly being considered as a key enabler towards long-term and cost-effective energy efficiency policies. However, the way to successfully apply educational interventions focused on such targets inside schools is still an open question. In this paper, we present our approach for enabling IoT-based energy savings and sustainability awareness lectures and promoting data-driven energy-saving behaviors focused on a high school audience. We present our experiences toward the successful application of sets of educational tools and software over a real-world Internet of Things (IoT) deployment. We discuss the use of gamification and competition as a very effective end-user engagement mechanism for school audiences. We also present the design of an IoT-based hands-on lab activity, integrated within a high school computer science curricula utilizing IoT devices and data produced inside the school building, along with the Node-RED platform. We describe the tools used, the organization of the educational activities and related goals. We report on the experience carried out in both directions in a high school in Italy and conclude by discussing the results in terms of achieved energy savings within an observation period.Comment: to be presented at 2019 European Conference on Ambient Intelligenc
    corecore