34,407 research outputs found

    Comparison of different repetitive control architectures: synthesis and comparison. Application to VSI Converters

    Get PDF
    Repetitive control is one of the most used control approaches to deal with periodic references/disturbances. It owes its properties to the inclusion of an internal model in the controller that corresponds to a periodic signal generator. However, there exist many different ways to include this internal model. This work presents a description of the different schemes by means of which repetitive control can be implemented. A complete analytic analysis and comparison is performed together with controller synthesis guidance. The voltage source inverter controller experimental results are included to illustrative conceptual developmentsPeer ReviewedPostprint (published version

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure

    Discrete-time sliding mode control of high precision linear drive using frictional model

    Get PDF
    The paper deals with high precision motion control of linear drive system. The accuracy and behavior of the linear drive system are highly affected by the non-linear frictional component compromising of stiction, viscous and stribeck effect present in the system especially in the vicinity of zero velocity. In order to achieve the high accuracy and motion it is mandatory to drive our system with low velocity resulting in many non linear phenomena like tracking error, limit cycles and undesired stick-slip motion etc. This paper discuss the design and implementation of discrete time sliding mode control along with the implementation of dynamic frictional model in order to estimate and compensate the disturbance arising due to frictional component. Experimental results are presented to illustrate the effectiveness and achievable control performance of the proposed scheme

    H2/H∞ output information-based disturbance attenuation for differential linear repetitive processes

    No full text
    Repetitive processes propagate information in two independent directions where the duration of one is finite. They pose control problems that cannot be solved by application of results for other classes of 2D systems. This paper develops controller design algorithms for differential linear processes, where information in one direction is governed by a matrix differential equation and in the other by a matrix discrete equation, in an H2/H∞ setting. The objectives are stabilization and disturbance attenuation, and the controller used is actuated by the process output and hence the use of a state observer is avoided

    Strong practical stability based robust stabilization of uncertain discrete linear repetitive processes

    No full text
    Repetitive processes are a distinct class of 2D systems of both theoretical and practical interest whose dynamics evolve over a subset of the positive quadrant in the 2D plane. The stability theory for these processes originally consisted of two distinct concepts termed asymptotic stability and stability along the pass respectively where the former is a necessary condition for the latter. Stability along the pass demands a bounded-input bounded-output property over the complete positive quadrant of the 2D plane and this is a very strong requirement, especially in terms of control law design. A more feasible alternative for some cases is strong practical stability, where previous work has formulated this property and obtained necessary and sufficient conditions for its existence together with Linear Matrix Inequality (LMI) based tests, which then extend to allow control law design. This paper develops considerably simpler, and hence computationally more efficient, stability tests that extend to allow control law design in the presence of uncertainty in process model

    LMI based Stability and Stabilization of Second-order Linear Repetitive Processes

    No full text
    This paper develops new results on the stability and control of a class of linear repetitive processes described by a second-order matrix discrete or differential equation. These are developed by transformation of the secondorder dynamics to those of an equivalent first-order descriptor state-space model, thus avoiding the need to invert a possibly ill-conditioned leading coefficient matrix in the original model
    corecore