74 research outputs found

    Advanced and Innovative Optimization Techniques in Controllers: A Comprehensive Review

    Get PDF
    New commercial power electronic controllers come to the market almost every day to help improve electronic circuit and system performance and efficiency. In DC–DC switching-mode converters, a simple and elegant hysteretic controller is used to regulate the basic buck, boost and buck–boost converters under slightly different configurations. In AC–DC converters, the input current shaping for power factor correction posts a constraint. But, several brilliant commercial controllers are demonstrated for boost and fly back converters to achieve almost perfect power factor correction. In this paper a comprehensive review of the various advanced optimization techniques used in power electronic controllers is presented

    Two degree of freedom fractional PI scheme for automatic voltage regulation

    Get PDF
    The effectiveness of the inferential control scheme based on robust fractional-order proportional integral (FOPI) controller is presented for automatic voltage regulation (AVR) applications. The method uses two degree of freedom (2DOF) in FOPI scheme, which is tuned with the whale optimization algorithm (WOA). Actually, any AVR needs to keep the reactive power of synchronous generator at demand level, stable voltage and frequency of the electrical power supplies. In this study, the 2DOF FOPI controller is proposed to deviate away from the standard integer order, to show the superiority of extra degree of freedom in both structure and controller. To improve the AVR performance, a new performance measure is proposed for the parameter tuning. The method acquires the significant robustness in parameter perturbation and disturbance interruptions. It is observed in the step response quality that the overshoot and settling time can be reduced to approximately by half than the recently published scheme. The various analyses are shown to accept the dominance of the proposed controller in terms of robustness

    The potential of fractional order distributed MPC applied to steam/water loop in large scale ships

    Get PDF
    The steam/water loop is a crucial part of a steam power plant. However, satisfying control performance is difficult to obtain due to the frequent disturbance and load fluctuation. A fractional order model predictive control was studied in this paper to improve the control performance of the steam/water loop. Firstly, the dynamic of the steam/water loop was introduced in large-scale ships. Then, the model predictive control with an extended prediction self adaptive controller framework was designed for the steam/water loop with a distributed scheme. Instead of an integer cost function, a fractional order cost function was applied in the model predictive control optimization step. The superiority of the fractional order model predictive control was validated with reference tracking and load fluctuation experiments

    An Efficient Optimal Fractional Emotional Intelligent Controller for an AVR System in Power Systems

    Get PDF
    In this paper, a high-performance optimal fractional emotional intelligent controller for an Automatic Voltage Regulator (AVR) in power system using Cuckoo optimization algorithm (COA) is proposed. AVR is the main controller within the excitation system that preserves the terminal voltage of a synchronous generator at a specified level. The proposed control strategy is based on brain emotional learning, which is a self-tuning controller so-called brain emotional learning based intelligent controller (BELBIC) and is based on sensory inputs and emotional cues. The major contribution of the paper is that to use the merits of fractional order PID (FOPID) controllers, a FOPID controller is employed to formulate stimulant input (SI) signal. This is a distinct advantage over published papers in the literature that a PID controller used to generate SI. Furthermore, another remarkable feature of the proposed approach is that it is a model-free controller. The proposed control strategy can be a promising controller in terms of simplicity of design, ease of implementation and less time-consuming. In addition, in order to enhance the performance of the proposed controller, its parameters are tuned by COA. In order to design BELBIC controller for AVR system a multi-objective optimization problem including overshoot, settling time, rise time and steady-state error is formulated. Simulation studies confirm that the proposed controller compared to classical PID and FOPID controllers introduced in the literature shows superior performance regarding model uncertainties. Having applied the proposed controller, the rise time and settling time are improved 47% and 57%, respectively

    Load Frequency Control (LFC) Strategies in Renewable Energy‐Based Hybrid Power Systems:A Review

    Get PDF
    The hybrid power system is a combination of renewable energy power plants and conventional energy power plants. This integration causes power quality issues including poor settling times and higher transient contents. The main issue of such interconnection is the frequency variations caused in the hybrid power system. Load Frequency Controller (LFC) design ensures the reliable and efficient operation of the power system. The main function of LFC is to maintain the system frequency within safe limits, hence keeping power at a specific range. An LFC should be supported with modern and intelligent control structures for providing the adequate power to the system. This paper presents a comprehensive review of several LFC structures in a diverse configuration of a power system. First of all, an overview of a renewable energy-based power system is provided with a need for the development of LFC. The basic operation was studied in single-area, multi-area and multi-stage power system configurations. Types of controllers developed on different techniques studied with an overview of different control techniques were utilized. The comparative analysis of various controllers and strategies was performed graphically. The future scope of work provided lists the potential areas for conducting further research. Finally, the paper concludes by emphasizing the need for better LFC design in complex power system environments

    Performance analysis of robust stable PID controllers using dominant pole placement for SOPTD process models

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThis paper derives new formulations for designing dominant pole placement based proportionalintegral-derivative (PID) controllers to handle second order processes with time delays (SOPTD). Previously, similar attempts have been made for pole placement in delay-free systems. The presence of the time delay term manifests itself as a higher order system with variable number of interlaced poles and zeros upon Pade approximation, which makes it difficult to achieve precise pole placement control. We here report the analytical expressions to constrain the closed loop dominant and nondominant poles at the desired locations in the complex s-plane, using a third order Pade approximation for the delay term. However, invariance of the closed loop performance with different time delay approximation has also been verified using increasing order of Pade, representing a closed to reality higher order delay dynamics. The choice of the nature of non-dominant poles e.g. all being complex, real or a combination of them modifies the characteristic equation and influences the achievable stability regions. The effect of different types of non-dominant poles and the corresponding stability regions are obtained for nine test-bench processes indicating different levels of open-loop damping and lag to delay ratio. Next, we investigate which expression yields a wider stability region in the design parameter space by using Monte Carlo simulations while uniformly sampling a chosen design parameter space. The accepted data-points from the stabilizing region in the design parameter space can then be mapped on to the PID controller parameter space, relating these two sets of parameters. The widest stability region is then used to find out the most robust solution which are investigated using an unsupervised data clustering algorithm yielding the optimal centroid location of the arbitrary shaped stability regions. Various time and frequency domain control performance parameters are investigated next, as well as their deviations with uncertain process parameters, using thousands of Monte Carlo simulations, around the robust stable solution for each of the nine test-bench processes. We also report, PID controller tuning rules for the robust stable solutions using the test-bench processes while also providing computational complexity analysis of the algorithm and carry out hypothesis testing for the distribution of sampled data-points for different classes of process dynamics and non-dominant pole types.KH acknowledges the support from the University Grants Commission (UGC), Govt. of India under its Basic Scientific Research (BSR) schem

    Fractional order PI λD µA controller design based on Bode’s ideal function

    Get PDF
    The fractional order proportional, integral, derivative and acceleration (PI λD µA) controller is an extension of the classical PIDA controller with real rather than integer integration action order λ and differentiation action order µ. Because the orders λ and µ are real numbers, they will provide more flexibility in the feedback control design for a large range of control systems. The Bode’s ideal transfer function is largely adopted function in fractional control systems because of its iso-damping property which is an essential robustness factor. In this paper an analytical design technique of a fractional order PI λD µA controller is presented to achieve a desired closed loop system whose transfer function is the Bode’s ideal function. In this design method, the values of the six parameters of the fractional order PI λD µA controllers are calculated using only the measured step response of the process to be controlled. Some simulation examples for different third order motor models are presented to illustrate the benefits, the effectiveness and the usefulness of the proposed fractional order PI λD µA controller tuning technique. The simulation results of the closed loop system obtained by the fractional order PI λD µA controller are compared to those obtained by the classical PIDA controller with different design methods found in the literature. The simulation results also show a significant improvement in the closed loop system performances and robustness using the proposed fractional order PI λD µA controller design

    A survey on fopid controllers for lfo damping in power systems using synchronous generators, facts devices and inverter-based power plants

    Get PDF
    In recent decades, various types of control techniques have been proposed for use in power systems. Among them, the use of a proportional–integral–derivative (PID) controller is widely recognized as an effective technique. The generalized type of this controller is the fractional-order PID (FOPID) controller. This type of controller provides a wider range of stability area due to the fractional orders of integrals and derivatives. These types of controllers have been significantly considered as a new approach in power engineering that can enhance the operation and stability of power systems. This paper represents a comprehensive overview of the FOPID controller and its applications in modern power systems for enhancing low-frequency oscillation (LFO) damping. In addition, the performance of this type of controller has been evaluated in a benchmark test system. It can be a driver for the development of FOPID controller applications in modern power systems. Investigation of different pieces of research shows that FOPID controllers, as robust controllers, can play an efficient role in modern power systems

    Effect of fractional-order PID controller with acceleration feedback on a linear single degree-of-freedom oscillator

    Get PDF
    A linear single degree-of-freedom (SDOF) oscillator with fractional-order PID controller of acceleration feedback is investigated by the averaging method, and the approximately analytical solution is obtained. Moreover, the numerical solution of the system is obtained by the step-down order method and the power series method progressively. The effects of the parameters in fractional-order PID controller on the dynamical properties are characterized by some new equivalent parameters. The proportional component of fractional-order PID controller is characterized in the form of equivalent mass. The integral component of fractional-order PID controller is denoted in the form of the equivalent linear damping and equivalent mass. The differential component of fractional-order PID controller is denoted in the form of the equivalent linear negative damping and equivalent mass. Those equivalent parameters could distinctly illustrate the effects of the parameters in fractional PID controller on the dynamical response. A comparison between the analytical solution with the numerical results is made, and their satisfactory agreement verifies the correctness of the approximately analytical results. The effects of the parameters in fractional-order PID controller on control performance are further analyzed by some performance parameters of the time response. Finally, the robustness of the fractional-order PID controller based on acceleration feedback is demonstrated through the control of a SDOF quarter vehicle suspension model
    corecore