4 research outputs found

    Assisted Magnetic Soft Continuum Robot Navigation via Rotating Magnetic Fields

    Get PDF
    Innovative robotic catheters that are soft, flexible, and controlled by magnets have the potential to revolutionize minimally invasive surgical procedures in critical areas such as the lungs, brain and pancreas, which currently pose significant safe access challenges using existing technology. These shape forming millimetre-scale magnetic soft continuum robots (MSCRs) can be designed to be highly dexterous in order to access regions of the anatomy otherwise deemed inaccessible. However, due to their soft and slender nature, MSCRs are prone to buckling under compressive loads during insertion. In this study we demonstrate buckling free insertion of high aspect ratio (80 mm long by 2 mm diameter) MSCRs into narrow, tortuous lumens enabled by coupling a specific lengthwise magnetic profile with exposure to a rotating magnetic field (RMF). We present design, finite element modelling (FEM) of the motion, fabrication and actuation of three different MSCRs. These robots are cast from NdFeB doped silicone polymer to obtain 2 mm and 3 mm diameter catheters. These are magnetized in a predefined profile such that when the catheters are placed in an RMF, a serpentine motion is generated. Experiments were conducted to quantify the behaviour of these soft catheters navigating through a soft phantom that mimicked narrow tortuous lumens such as the pancreas and bile ducts. Oscillating actuation increased the inserted depth reached by the MSCR in a tortuous channel and even enabled squeezing through a 1 mm diameter opening via shape morphing. The experiments showed that an RMF reduced the required insertion forces by almost 45% and increased the distance inserted in a fixed time frame by 3 times

    Snake-Like Robots for Minimally Invasive, Single Port, and Intraluminal Surgeries

    Full text link
    The surgical paradigm of Minimally Invasive Surgery (MIS) has been a key driver to the adoption of robotic surgical assistance. Progress in the last three decades has led to a gradual transition from manual laparoscopic surgery with rigid instruments to robot-assisted surgery. In the last decade, the increasing demand for new surgical paradigms to enable access into the anatomy without skin incision (intraluminal surgery) or with a single skin incision (Single Port Access surgery - SPA) has led researchers to investigate snake-like flexible surgical devices. In this chapter, we first present an overview of the background, motivation, and taxonomy of MIS and its newer derivatives. Challenges of MIS and its newer derivatives (SPA and intraluminal surgery) are outlined along with the architectures of new snake-like robots meeting these challenges. We also examine the commercial and research surgical platforms developed over the years, to address the specific functional requirements and constraints imposed by operations in confined spaces. The chapter concludes with an evaluation of open problems in surgical robotics for intraluminal and SPA, and a look at future trends in surgical robot design that could potentially address these unmet needs.Comment: 41 pages, 18 figures. Preprint of article published in the Encyclopedia of Medical Robotics 2018, World Scientific Publishing Company www.worldscientific.com/doi/abs/10.1142/9789813232266_000

    Comparative Review of Endoscopic Devices Articulations Technologies Developed for Minimally Invasive Medical Procedures

    Get PDF
    This study introduces a comparative performance analysis of the technological solutions that have been used to build distal active articulations for minimally invasive medical procedures. The aim is to provide a practical and concise database and classification tool for anyone that wants to learn more about the technologies involved in minimally invasive medical devices, or for any designer interested in further improving these devices. A review of the different articulations developed in this field is therefore performed and organized by both actuation technology and structural architecture. Details are presented concerning the mechanical structures as well as the actuation and the mechanical transmission technologies available. The solutions are evaluated keeping as a reference some chosen required performances and characteristics for minimally invasive surgical procedures. Finally, a quantified comparison chart of these devices is given regarding selected criteria of interest for minimally invasive surgical application

    A flexible access platform for robot-assisted minimally invasive surgery

    No full text
    Advances in Minimally Invasive Surgery (MIS) are driven by the clinical demand to reduce the invasiveness of surgical procedures so patients undergo less trauma and experience faster recoveries. These well documented benefits of MIS have been achieved through parallel advances in the technology and instrumentation used during procedures. The new and evolving field of Flexible Access Surgery (FAS), where surgeons access the operative site through a single incision or a natural orifice incision, is being promoted as the next potential step in the evolution of surgery. In order to achieve similar levels of success and adoption as MIS, technology again has its role to play in developing new instruments to solve the unmet clinical challenges of FAS. As procedures become less invasive, these instruments should not just address the challenges presented by the complex access routes of FAS, but should also build on the recent advances in pre- and intraoperative imaging techniques to provide surgeons with new diagnostic and interventional decision making capabilities. The main focus of this thesis is the development and applications of a flexible robotic device that is capable of providing controlled flexibility along curved pathways inside the body. The principal component of the device is its modular mechatronic joint design which utilises an embedded micromotor-tendon actuation scheme to provide independently addressable degrees of freedom and three internal working channels. Connecting multiple modules together allows a seven degree-of-freedom (DoF) flexible access platform to be constructed. The platform is intended for use as a research test-bed to explore engineering and surgical challenges of FAS. Navigation of the platform is realised using a handheld controller optimised for functionality and ergonomics, or in a "hands-free" manner via a gaze contingent control framework. Under this framework, the operator's gaze fixation point is used as feedback to close the servo control loop. The feasibility and potential of integrating multi-spectral imaging capabilities into flexible robotic devices is also demonstrated. A force adaptive servoing mechanism is developed to simplify the deployment, and improve the consistency of probe-based optical imaging techniques by automatically controlling the contact force between the probe tip and target tissue. The thesis concludes with the description of two FAS case studies performed with the platform during in-vivo porcine experiments. These studies demonstrate the ability of the platform to perform large area explorations within the peritoneal cavity and to provide a stable base for the deployment of interventional instruments and imaging probes
    corecore