58 research outputs found

    A Novel Lockable Spring-loaded Prismatic Spine to Support Agile Quadrupedal Locomotion

    Full text link
    This paper introduces a way to systematically investigate the effect of compliant prismatic spines in quadrupedal robot locomotion. We develop a novel spring-loaded lockable spine module, together with a new Spinal Compliance-Integrated Quadruped (SCIQ) platform for both empirical and numerical research. Individual spine tests reveal beneficial spinal characteristics like a degressive spring, and validate the efficacy of a proposed compact locking/unlocking mechanism for the spine. Benchmark vertical jumping and landing tests with our robot show comparable jumping performance between the rigid and compliant spines. An observed advantage of the compliant spine module is that it can alleviate more challenging landing conditions by absorbing impact energy and dissipating the remainder via feet slipping through much in cat-like stretching fashion.Comment: To appear in 2023 IEEE IRO

    A new mechanical design for legged robots to reduce energy consumption

    Get PDF
    Many legged robots have been designed and built by universities, research institutes and industry; however, few investigations regard energy consumption as a crucial design criterion. This paper presents a novel configuration for legged robots to reduce the energy consumption. The proposed leg can be either used as a single leg or easily attached to bodies with four, six and eight legs. This mechanism is a parallel four-bar linkage equipped with one active and four passive joints. In fact, the usage of the passive elements leads to simple feed-forward control paradigms. Moreover, another distinctive feature of this design is the arrangement of one-way clutches and flat springs to store the potential energy for utilizing it in the next step. A locomotion prototype of the proposed mechanical structure is built and its simulation is also presented in this paper. Comparing the results with other structures demonstrates the superiority and efficiency of this work regarding energy consumption problem.</p

    Model Predictive Control for Motion Planning of Quadrupedal Locomotion

    Get PDF

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Kinematics analysis of a FLHL robot parallel-executed cylinder mechanical integration system with force/position hybrid control servo actuator

    Get PDF
    In this research subtopic, an electro-hydraulic servo four-legged heavy load (FLHL) robot has been designed and developed. This paper proposes an integration layout cylinder design scheme for a non-lightweight hydraulic servo four-legged robot with high loads and torques of hip joint, and derives the mathematical element analysis model for a parallel hydraulic servo cylinder system. The multiple inherent characteristics of the parallel-executed cylinder integration system model are further explored. Based on the controllable functional requirements of interconnected joints and weakening the influence of internal force coupling, a design idea of force/position hybrid control scheme for the parallel-executed cylinder is determined, and then the force/position signal module design unit is used to reversely solve the force/position hybrid control. Considering the inherent requirements of the servo-executed cylinder force control unit module, the implementation process of magnetic flux compensation and speed compensation is discussed in detail. The minimum amplitude controller is applied to the servo-executed cylinder force unit module, and the proportional integrated controller has been determined in the servo-executed cylinder position control unit module. A compound control strategy proposed in this paper is verified on a parallel hydraulic servo platform. The experimental verification results reveal that the values of position/force attenuation amplitude and lag phase are not greater than 9 % and 18°, respectively. In addition, the feasibility of the interconnected implementation of the hybrid control scheme proposed in this paper is further deepened. The effective conclusion of this research will be accepted in the application field of FLHL robot control system

    Agile legged robot locomotion

    Get PDF

    Rapid acceleration of legged robots: a pneumatic approach

    Get PDF
    For robotics to be useful to the public in a multifaceted manner, they need to be both legged and agile. The legged constraint arises as many environments and systems in our world are tailored to ablebodied adults. Therefore, a practically useful robot would need to have the same morphology for maximum efficacy. For robots to be useful in these environments, they need to perform at least as well as humans, therefore presenting the agility constraint. These requirements have been out of reach of the field until recently. The aim of this thesis was to design a planar monopod robot for rapid acceleration manoeuvres, that could later be expanded to a planar quadruped robot. This was achieved through a hybrid electric and pneumatic actuation system. To this end, modelling schemes for the pneumatic cylinder were investigated and verified with physical experiments. This was done to develop accurate models of the pneumatic system that were later used in simulation to aid in the design of the platform. The design of the platform was aided through the use of Simulink to conduct iterative testing and multivariate evaluations using Monte Carlo simulation methods. Once the topology of the leg was set, the detail design was conducted in Solidworks and validated with its built in simulation functions. In addition to the mechanical design of the platform, a specialist boom was designed. The design needed to compensate for the forces the robot exerts on the boom as well as the material constraints on the boom. This resulted in the development of a cable-stayed, four bar mechanism boom system. An embedded operating system was created to control the robot and take in and fuse sensor inputs. This was run using multiple sensors, sub-controllers and microcontrollers. Sensor fusion for the system was done using a Kalman Filter to improve readings and estimate unmeasured states of the robot. This Kalman Filter took LiDAR and accelerometer readings as inputs to the system to produce a subcentimetre accurate position measure for the system. Finally, the completed platform was validated using fixed-body forward hopping tests. These tests showed a significant degree of similarity to the simulated results and therefore validated the design process
    • …
    corecore