2,569 research outputs found

    Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review

    Full text link
    Advances in reflectarrays and array lenses with electronic beam-forming capabilities are enabling a host of new possibilities for these high-performance, low-cost antenna architectures. This paper reviews enabling technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years. The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification. Finally, the paper concludes by discussing future challenges and possibilities for these antennas.Comment: 16 pages, 12 figure

    Integration of Second-Order Bandstop Filter Into a Dual-Polarized 5G Millimeter-Wave Magneto-Electric Dipole Antenna

    Full text link
    This communication proposes a dual-wideband differentially fed dual-polarized magnetoelectric (ME) dipole with second-order bandstop filtering for millimeter-wave (mm-Wave) applications at 24.25-29.5 GHz and 37-43.5 GHz. Without disturbing the complementary antenna operation, two resonator types (hairpin and coupled {\lambda}/4 open-/short-circuited stub resonators), are embedded into the wideband ME dipole to create two transmission poles and two zeros for sharp band-edge selectivity. This allows independent manipulation of the transmission poles and zeros and a compact ME dipole size. Across the operating band, the symmetric filtering antenna design has more than 31.6 dB of port-to-port isolation. Measured results show symmetrical E- and H-plane radiation patterns and cross-polarization levels lower than -25.1 dB. The measured gains of the single element and a 2x2 array are 8.3 dBi and 12.5 dBi, respectively. Also, the band rejection reaches 23.7 dB and 21.8 dB for single element and array, respectively

    Compact, Efficient, and Wideband Near-Field Resonant Parasitic Filtennas

    Get PDF
    As a hybrid component in RF front-end systems, filtennas possess the distinctive advantages of simultaneously combining filtering and radiating performance characteristics. Consequently, filtennas not only save space and costs but also reduce transmission losses. In this chapter, three sorts of filtennas have been proposed: the first sort is band-pass/band-stop filtennas, which are mainly realized by assembling band-pass/band-stop filters and antennas to achieve the combined functions; the second sort is multi-resonator-cascaded filtennas, which are obtained by altering the coupled-resonators in the last stage of the filters to act as the radiating elements; and the third sort is near-field resonant parasitic, bandwidth-enhanced filtennas, which are accomplished through organically combining radiator and filtering structures. For the second and third sorts, it is worth noting that the design methods witness significant electrical size reduction without degrading the radiation performance of the filtennas in general

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-µm SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86º, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-µm SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86º, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    UWB Technology

    Get PDF
    Ultra Wide Band (UWB) technology has attracted increasing interest and there is a growing demand for UWB for several applications and scenarios. The unlicensed use of the UWB spectrum has been regulated by the Federal Communications Commission (FCC) since the early 2000s. The main concern in designing UWB circuits is to consider the assigned bandwidth and the low power permitted for transmission. This makes UWB circuit design a challenging mission in today's community. Various circuit designs and system implementations are published in this book to give the reader a glimpse of the state-of-the-art examples in this field. The book starts at the circuit level design of major UWB elements such as filters, antennas, and amplifiers; and ends with the complete system implementation using such modules

    Inverted microstrip Gap Waveguide filtering antenna based on coplanar EBG resonators

    Get PDF
    This article belongs to the Collection RF and Microwave CommunicationsA new simple design of an inverted microstrip Gap Waveguide filtering antenna integrated with two stopband filters is proposed in this work. In order to simultaneously provide filtering and radiating functions, we use the direct integration approach to cascade two periodic sets of coplanar coupled EBG resonators with a slot antenna. The analysis shows that the filters can be easily adjusted in the same feeding layer of the antenna, without extra circuitry and without modifying the lines. EBG-filters are compact and offer great flexibility in determining the frequency, width and selectivity of the rejected bands. Experimental results for an X-band filtering antenna prototype are provided showing a 7.3% transmission band centered at 10.2 GHz and a realized gain peak of 2.1 dBi. The measurements demonstrate the filtering capability of the proposed antenna, achieving rejection levels greater than 12 dB and 20 dB for the bands below and above the operation band. The proposed low-complexity design offers good performance as a filter and as an antenna, showing the essential advantages of the Gap Waveguide Technology, including low losses, self-packaging and limited cost. This work demonstrates the possibility of integrating the new coplanar EBG-filters into future Gap Waveguide antenna designs to avoid unwanted radiation, to reduce interfering signals or to provide high isolation in multiband systems.This research was funded by the Spanish Ministerio de Ciencia, Innovación y Universidades grant numbers [Agencia Estatal de Investigación PID2019-107688RB-C21 and TEC2016-79700-C2-R]
    corecore