13,337 research outputs found

    Medium Voltage Generation System with Five-level NPC Converters for Kite Tidal Power

    Get PDF
    Offshore power generation has emerged as a prominent source of energy and the installed capacity of new plants has been steadily increasing in recent years. Tidal power specifically is a promising renewable energy source which has not been highly exploited yet, despite its distinctive advantages of being predictable and independent of weather conditions. The main objective of this Licentiate thesis is to analyze and propose solutions for two common problems in offshore power production, which are the power variations due to the non-steady speed profile of the water speed flowing through the turbine and the efficient transportation of the produced power to the shore.The tidal power application utilized in this thesis is the subsea kite, which is a recently developed tidal energy conversion technology that can increase the generated power compared to a traditional static tidal turbine. A turbine is mounted on a submerged kite and the kite moves inside the sea following a predefined trajectory and generating electric power from the tidal currents. The speed and torque of the turbine varies periodically due to the periodic movement of the kite in the sea and, therefore, the control of the generator needs to be able to handle this variable generated power. The kite studied in this thesis has rated active power of 500 kW.In the first part of the thesis, the power generation system of the subsea kite is modelled and the profile of the generated power is extracted given a specific tidal current and turbine geometry. The control of the power converters is described and tested for the specific profile of the generated power. The speed of the generator is controlled by a properly designed Maximum Power Point Tracking algorithm, which ensures that the generator extracts the maximum power from the tidal stream. Experimental verification of the model of this innovative system is also conducted on a laboratory 35 kVA emulator of the tidal power generator.The second part of the thesis deals with the design of a medium voltage generator\ua0drive. The use of medium voltage in the power generation system is highly advantageous for the tidal kite application, since it can reduce the current flowing through the undersea cables connecting the tidal plant to the local grid. Therefore, the size of the cables can be reduced. The drive proposed here uses two 5-level Neutral Point Clamped (NPC) converters connected back-to-back. The 5-level NPC converters can operate with high voltage, while using multiple low-voltagerated power switches. Contrarily, the typical 2-Level converters have limited voltage capability, since they would require more expensive high-voltage-rated power switches. The increased operating voltage of the power conversion system results to lower current and losses in the cables. Another advantage of the NPC converter is the low harmonics at the ac side, which reduces the requirements for passive grid filters. However, the voltage balancing of the dc-link capacitors in this converter topology is a challenge which has not been effectively solved in previous studies. Therefore, a novel voltage balancing strategy is proposed here that uses advanced Space-Vector-Modulation techniques and hardware-based voltage balancing schemes with reduced number of components and lower power losses. Finally, a laboratory prototype of the NPC-converter-based power conversion system is developed with rated power 50 kVA. SiC MOSFETs are used on theconverters to further increase the system’s efficiency and voltage capability.This thesis presents the model, control and laboratory emulator of a kite-based tidal power generator. The experimental set-up can be utilized for conducting research on other renewable sources, such as wind power, that have similar performance. Also, the developed multilevel drive is suitable for various applications where medium voltage grid-connected drives are used and particularly in distributed renewable power generation

    Control of Towing Kites for Seagoing Vessels

    Full text link
    In this paper we present the basic features of the flight control of the SkySails towing kite system. After introduction of coordinate definitions and basic system dynamics we introduce a novel model used for controller design and justify its main dynamics with results from system identification based on numerous sea trials. We then present the controller design which we successfully use for operational flights for several years. Finally we explain the generation of dynamical flight patterns.Comment: 12 pages, 18 figures; submitted to IEEE Trans. on Control Systems Technology; revision: Fig. 15 corrected, minor text change

    Autonomous take-off and landing of a tethered aircraft: a simulation study

    Full text link
    The problem of autonomous launch and landing of a tethered rigid aircraft for airborne wind energy generation is addressed. The system operates with ground-based power conversion and pumping cycles, where the tether is repeatedly reeled in and out of a winch installed on the ground and linked to an electric motor/generator. In order to accelerate the aircraft to take-off speed, the ground station is augmented with a linear motion system composed by a slide translating on rails and controlled by a second motor. An onboard propeller is used to sustain the forward velocity during the ascend of the aircraft. During landing, a slight tension on the line is kept, while the onboard control surfaces are used to align the aircraft with the rails and to land again on them. A model-based, decentralized control approach is proposed, capable to carry out a full cycle of launch, low-tension flight, and landing again on the rails. The derived controller is tested via numerical simulations with a realistic dynamical model of the system, in presence of different wind speeds and turbulence, and its performance in terms of landing accuracy is assessed. This study is part of a project aimed to experimentally verify the launch and landing approach on a small-scale prototype.Comment: This is the longer version of a paper submitted to the 2016 American Control Conference 2016, with more details on the simulation parameter

    Kinetic isolation tether experiment

    Get PDF
    Progress was made on the analysis of tether damping and on experimentation of the control system on the laboratory simulator. The damping analysis considers the dynamics of a long tether connecting two spacecraft in Earth orbit, one of the spacecraft having dominant mass. In particular, it considers the material damping of the tether. The results show that, with properly chosen tether material and braiding structure, longitudinal vibration of the tethered system is well damped. A particularly effective method of implementing attitude control for tethered satellites is to use the tether tension force to generate control torques by moving the tether attach point relative to the satellite center of mass. A scaled, one dimensional laboratory simulation of the KITE mission was built and preliminary experiments of the proposed attitude control system were performed. The simulator was built to verify theoretical predictions of attitude controllability, and to investigate the technological requirements in order to implement this concept. A detailed description of the laboratory apparatus is provided, and in addition, the results of the preliminary experiments are presented and discussed
    • 

    corecore