3 research outputs found

    An ultra-wideband sensing board for IoT

    Get PDF
    In this paper, we present an ultra-wideband impedance sensing board for the radio-frequency front-ends used in wireless units for the Internet of Things and the fifth-generation wireless communication systems. We adopt as an impedance sensing board a six-port junction which was designed, fabricated, and tested experimentally in the frequency range from 5 GHz to 6 GHz. Moreover, the sensing board functionality was fully validated with load-pull measurements carried out in the same frequency range

    ์•” ์ง„๋‹จ ๋ฐ ์น˜๋ฃŒ์— ์ ์šฉ ๊ฐ€๋Šฅํ•œ ๋งˆ์ดํฌ๋กœํŒŒ ๋Šฅ๋™ ์ง‘์  ํƒ์นจ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2015. 2. ๊ถŒ์˜์šฐ.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์•” ์ง„๋‹จ ๋ฐ ์น˜๋ฃŒ์— ์ ์šฉ ๊ฐ€๋Šฅํ•œ ์ดˆ์†Œํ˜• ๋งˆ์ดํฌ๋กœํŒŒ ๋Šฅ๋™ ์ง‘์  ํƒ์นจ์— ๋Œ€ํ•ด ๊ธฐ์ˆ ํ•˜์˜€๋‹ค. ์ƒ์ฒด ์กฐ์ง์˜ ๊ด‘๋Œ€์—ญ ์ธก์ •๊ณผ ์ €์ „๋ ฅ ์˜จ์—ด ์น˜๋ฃŒ์— ์ ์šฉ ํ•˜๊ธฐ ์œ„ํ•ด ์œ ์ „์œจ ์ธก์ • ํšŒ๋กœ๋ฅผ ํ‰๋ฉดํ˜• ๋™์ถ• ํƒ์นจ์— ์ง‘์ ํ•˜์˜€๊ณ , ๋งˆ์ดํฌ๋กœํŒŒ ๋ฐœ์ƒ ํšŒ๋กœ๋ฅผ ์–ดํ”Œ๋ฆฌ์ผ€์ดํ„ฐ์— ์ง‘์ ํ•˜์˜€๋‹ค. MEMS ๊ธฐ์ˆ ๊ณผ MMIC ๊ธฐ์ˆ ์„ ์ ์šฉํ•จ์œผ๋กœ์จ ๋‹จ์ผ ํ”Œ๋žซํผ์— ์ง‘์ ๋œ ์‹œ์Šคํ…œ์œผ๋กœ ๊ตฌํ˜„ํ•˜์—ฌ ์ง‘์ ๋„๋ฅผ ํ–ฅ์ƒ ์‹œํ‚ค๊ณ , ์‹œ์Šคํ…œ์„ ์†Œํ˜•ํ™” ํ•˜์˜€๋‹ค. ๋จผ์ € multi-state reflectometer๋ฅผ ์ด์šฉํ•˜์—ฌ ์•” ์ง„๋‹จ์— ํ™œ์šฉ ๊ฐ€๋Šฅํ•œ๋ณต์†Œ ์œ ์ „์œจ ์ธก์ • ๊ธฐ์ˆ ์— ๋Œ€ํ•ด ์ œ์•ˆํ•˜์˜€๋‹ค. 2, 16 GHz์—์„œ ๋™์ž‘ํ•˜๋Š” ๊ด‘๋Œ€์—ญ reflectometer๋Š” ์ด์ค‘ ๋Œ€์—ญ ์œ„์ƒ ๊ณ ์ • ๋ฃจํ”„ (PLL), ์ž„ํ”ผ๋˜์Šค ํŠœ๋„ˆ, RF ์ „๋ ฅ ๊ฒ€์ถœ๊ธฐ ๋“ฑ์˜ MMIC์™€ MEMS ๊ธฐ๋ฐ˜์˜ ๋ฐฉํ–ฅ์„ฑ ๊ฒฐํ•ฉ๊ธฐ, ํ‰๋ฉดํ˜• ํƒ์นจ์„ ์ง‘์ ํ•˜์—ฌ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์ œ์ž‘ํ•œ ๋Šฅ๋™ ์ง‘์  ํƒ์นจ ์‹œ์Šคํ…œ์„ ์ด์šฉํ•˜์—ฌ ์ƒ์ฒด ์กฐ์ง๊ณผ ์•” ์กฐ์ง ๋“ฑ์˜ ์œ ์ „์œจ์„ ์ธก์ •ํ•จ์œผ๋กœ์จ ์œ ์šฉํ•จ์„ ํ™•์ธํ•˜์˜€๊ณ , ์ธก์ •๋œ ์œ ์ „์œจ๊ณผ ํ‘œ์ค€๊ฐ’์„ ๋น„๊ตํ•˜์—ฌ ์‹œ์Šคํ…œ์˜ ์ธก์ • ์ •ํ™•๋„๋ฅผ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ €์ „๋ ฅ ๋งˆ์ดํฌ๋กœํŒŒ ์˜จ์—ด ์น˜๋ฃŒ ์š”๋ฒ•์„ ์œ„ํ•œ ๋Šฅ๋™ ์ง‘์  ํƒ์นจ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. MEMS ๊ณต์ •์„ ํ†ตํ•ด ์ œ์ž‘ํ•œ ํ‰๋ฉดํ˜• ์‹ค๋ฆฌ์ฝ˜ ํƒ์นจ์— ์ „์•• ์ œ์–ด ๋ฐœ์ง„๊ธฐ, ๊ตฌ๋™ ์ฆํญ๊ธฐ, ์ „๋ ฅ ์ฆํญ๊ธฐ๋ฅผ ์ง‘์ ํ•˜์—ฌ ๋Šฅ๋™ ์ง‘์  ํƒ์นจ ์‹œ์Šคํ…œ์„ ์ œ์ž‘ํ•˜์˜€๋‹ค. ์น˜๋ฃŒ๋ฅผ ์ง„ํ–‰ํ•˜๋Š” ๋™์•ˆ, ๋งˆ์ดํฌ๋กœํŒŒ์˜ ์ „๋ ฅ์„ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋„๋ก ์ „๋ ฅ ๊ฒ€์ถœ๊ธฐ์™€ ๋ฐฉํ–ฅ์„ฑ ๊ฒฐํ•ฉ๊ธฐ๋„ ํ•จ๊ป˜ ์ง‘์ ํ•˜์˜€๋‹ค. ์•”, ๊ทผ์œก ๋“ฑ ๋‹ค์–‘ํ•œ ์ƒ์ฒด ์กฐ์ง์„ ์ด์šฉํ•œ ์‹คํ—˜์˜ ๊ฒฐ๊ณผ๋กœ๋ถ€ํ„ฐ Ku ๋Œ€์—ญ์˜ ์ฃผํŒŒ์ˆ˜์—์„œ ์ €์ „๋ ฅ ๋งˆ์ดํฌ๋กœํŒŒ ์˜จ์—ด ์น˜๋ฃŒ๊ฐ€ ๊ฐ€๋Šฅํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์ž์„ฑ ๋‚˜๋…ธ์ž…์ž๋ฅผ ์ด์šฉํ•œ ์˜จ์—ด ์น˜๋ฃŒ์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด ๋Šฅ๋™ ์ง‘์  ํƒ์นจ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ž์„ฑ ๋‚˜๋…ธ์ž…์ž๊ฐ€ ์˜จ์—ด ์น˜๋ฃŒ ์š”๋ฒ•์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ์ „์ž๊ธฐ-์—ด ๊ฒฐํ•ฉ ํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ , ์ด๋กœ๋ถ€ํ„ฐ ์ž์„ฑ ๋‚˜๋…ธ์ž…์ž์˜ ์„ ํƒ๋„ ํ–ฅ์ƒ์„ ์œ„ํ•œ ์ตœ์ ์˜ ์ฃผํŒŒ์ˆ˜๋ฅผ ๊ฒฐ์ •ํ•˜์˜€๋‹ค. ๋ฐœ์ง„๊ธฐ์™€ ์ „๋ ฅ ์ฆํญ๊ธฐ MMIC์™€ ์ด์ค‘ ์ฑ„๋„ ๋กœ๊ทธ ์ „๋ ฅ ๊ฒ€์ถœ๊ธฐ, ๋ฐฉํ–ฅ์„ฑ ๊ฒฐํ•ฉ๊ธฐ๋ฅผ ํƒ์นจ์— ์ง‘์ ํ•˜์—ฌ ์‹œ์Šคํ…œ์„ ์ œ์ž‘ํ•˜์˜€๋‹ค. ์ด๋ฅผ ์ด์šฉํ•œ ์‹คํ—˜ ๊ฒฐ๊ณผ๋กœ๋ถ€ํ„ฐ ๋Šฅ๋™ ์ง‘์  ํƒ์นจ์˜ ์„ฑ๋Šฅ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ์ž์„ฑ ๋‚˜๋…ธ์ž…์ž๊ฐ€ ์ €์ „๋ ฅ ๋ฐ ์•” ํŠน์ด ๋งˆ์ดํฌ๋กœํŒŒ ์˜จ์—ด ์น˜๋ฃŒ์˜ ํšจ์œจ๊ณผ ์„ ํƒ๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๋Š”๋ฐ ์œ ์šฉํ•จ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค.This thesis presents miniaturized microwave active integrated probe systems applicable to cancer detection and treatment. To realize broadband detection and low-power hyperthermia, planar-type coaxial probes and heat applicators have been integrated with active circuits for permittivity measurement and microwave generation, respectively. Each integrated system is implemented on a single platform using Microelectromechanical Systems (MEMS) and monolithic microwave integrated circuit (MMIC) technologies for miniaturization and integration. First, a complex permittivity measurement technique using an integrated multi-state reflectometer (MSR) is proposed for cancer detection application. The broadband MSR covering both 2 and 16 GHz bands consists of a dual-band phase-locked loop, a directional coupler, an impedance tuner, two RF power detectors, and a micromachined silicon planar probe with an open-ended coaxial aperture. All the active and passive circuit components have been integrated on the micromachined probe platform in a small form factor of 6.8 mm ร— 50 mm ร— 0.6 mm. The performance of the fabricated integrated probe has been evaluated by comparing the measured permittivities of 0.9% saline, pork muscle, fat, and xenografted human breast cancer with the reference data. For low-power microwave hyperthermia, a Ku-band active integrated heat applicator is demonstrated. A planar-type coaxial applicator has been fabricated using silicon micromachining technology, on which a Ku-band voltage controlled oscillator (VCO), a driver amplifier, and a power amplifier (PA) have been integrated. A directional coupler and power detectors are employed for power monitoring. The fully integrated heat applicator has been realized in a small footprint of 8 mm ร— 56 mm. In-vitro and in-vivo ablation experiments on pork muscle, fat, and human-cancer xenografted nude mouse demonstrate the feasibility of low-power hyperthermia using Ku-band microwaves. Finally, an active integrated heat applicator for magnetic nanoparticle (MNP)-assisted hyperthermia is developed. The effect of the MNP on microwave hyperthermia has been analyzed by a coupled electromagnetic-thermal analysis. The optimum frequency for hyperthermia is determined by the coupled analysis. A 2-GHz source module consisting of a VCO and a PA has been implemented in MMICs and integrated on the heat applicator platform. A dual-channel log detector and a directional coupler have been also employed to monitor the power levels during hyperthermia. Experiment results show not only sufficient heating performance of the integrated applicator, but also the effectiveness of the MNP for low-power and cancer-specific microwave hyperthermia.Abstract i Contents iv List of Figures viii List of Tables xv 1. Introduction 1 1.1 Motivation 1 1.2 Microwave Cancer Detection 4 1.3 Microwave Hyperthermia 5 1.4 Outline of Thesis 7 2. Active Integrated Probe for Cancer Detection 9 2.1 Introduction 9 2.2 Principle of Operation 13 2.2.1 Multi-State Reflectometer 14 2.2.2 Governing Equation for Complex Permittivity 15 2.2.3 Determination of Complex Permittivity 17 2.2.4 Calibration 19 2.3 Design and Fabrication 21 2.3.1 Micromachined Planar Coaxial Probe 21 2.3.2 Impedance Tuner 30 2.3.3 Directional Coupler 34 2.3.4 Power Detector 37 2.3.5 Signal Source 39 2.3.6 Active Integrated Probe System 43 2.4 Measurement Results 46 2.5 Summary 52 3. Ku-Band Active Integrated Heat Applicator for Cancer Ablation 54 3.1 Introduction 54 3.2 Design and Fabrication 57 3.2.1 Micromachined Planar Coaxial Applicator 58 3.2.2 Microwave Source 63 3.2.3 Power Monitoring Circuits 67 3.2.4 Ku-Band Active Integrated Applicator System 67 3.3 Experiment Results 70 3.4 Summary 77 4. Active Integrated Heat Applicator for Magnetic Nanoparticle-Assisted Hyperthermia 79 4.1 Introduction 79 4.2 Magnetic Nanoparticle (MNP) 82 4.2.1 Heating mechanism of MNP 83 4.2.2 Permeability of MNP 84 4.3 Coupled Electromagnetic-Thermal Analysis 88 4.3.1 Coupled Electromagnetic-Thermal Problems 88 4.3.2 Electromagnetic Analysis 92 4.3.3 Thermal Analysis 94 4.3.4 Analysis Results 96 4.4 Design and Fabrication 103 4.4.1 Spiral Applicator 104 4.4.2 Microwave Source 107 4.4.3 Power Monitoring Circuits 111 4.4.4 Active Integrated Applicator for MNP-Assisted Hyperthermia 119 4.5 Experiment Results 122 4.6 Summary 132 5. Conclusion 134 Bibliography 137 Abstract in Korean 152Docto
    corecore