9,780 research outputs found

    Sketch-based Queries in Mobile GIS-Environments

    Get PDF
    Recent achievements in the field of mobile computing and wireless communication promise data retrieval anywhere and anytime. This development provided the basis to expand GIs technology to handheld devices, such as personal digital assistants (PDAs). Although traditional GIs technology is well suited for desktop workstations, it needs to be adapted in order to satisfy the requirements of users using handheld computing devices. This adaptation is necessary because the usability of traditional GISs depends on characteristics of desktop computers, such as their relatively large user interfaces (e.g., displays, keyboards, pointing devices), considerable computing resources (i.e., CPU, memory, storage, operating systems), and high bandwidth network connectivity. Small devices possess few of these characteristics, hence, requiring new and efficient methods for interaction with spatial databases. We propose a concept that supports sketch-based querying in mobile GIs environments. This concept combines newest techniques for spatial querying and mobile technologies. Such a combination is beneficial for users because it allows them to formulate queries by drawing the desired configuration with a pen on the touch-sensitive PDA screen, and consequently avoids typing complex statements in some SQL-like query language. Client-server architectures in mobile environments are characterized by low and fluctuating bandwidth, and by frequent disconnections. We discuss client-server strategies in mobile environments, suggest an adaptive client-server architecture for geomobile querying, and analyze the performance. It is shown that adaptation to the mobile environment is necessary in order to ensure efficiency of geo-mobile queries

    Mobile Location Based Services: Non-visual Feedback Using Haptics

    Get PDF
    Haptics is a feedback technology that takes advantage of the human sense of touch by applying forces, vibrations, and/or motions to a haptic-enabled device such as a mobile phone. Historically, human-computer interaction has been visual, text and images on the screen. In this paper, we discuss our Haptic Interaction Model which describes the integration of haptic feedback into Mobile Location Based Services such as knowledge discovery, pedestrian navigation and notification systems. A knowledge discovery system called the Haptic GeoWand is a low interaction system that allows users to query geo-tagged data around them by using a point-and-scan technique with their mobile device. Haptic Pedestrian is a navigation system for walkers. Four prototypes have been developed classified according to the user‟s guidance requirements, the user type (based on spatial skills), and overall system complexity. Haptic Alert is a notification system that provides spatial information to the users of public transport. In all these systems, haptic feedback is used to convey information about location, orientation, density and distance by use of the vibration alarm with varying frequencies and patterns to help understand the physical environment. User trials have elicited positive response from the users. Haptics integrated into a multi-modal navigation system and other mobile location based services provides more usable, less distracting but more effective interaction than conventional systems

    Mobile Location Based Services: Non-visual Feedback Using Haptics

    Get PDF
    Haptics is a feedback technology that takes advantage of the human sense of touch by applying forces, vibrations, and/or motions to a haptic-enabled device such as a mobile phone. Historically, human-computer interaction has been visual, text and images on the screen. In this paper, we discuss our Haptic Interaction Model which describes the integration of haptic feedback into Mobile Location Based Services such as knowledge discovery, pedestrian navigation and notification systems. A knowledge discovery system called the Haptic GeoWand is a low interaction system that allows users to query geo-tagged data around them by using a point-and-scan technique with their mobile device. Haptic Pedestrian is a navigation system for walkers. Four prototypes have been developed classified according to the user‟s guidance requirements, the user type (based on spatial skills), and overall system complexity. Haptic Alert is a notification system that provides spatial information to the users of public transport. In all these systems, haptic feedback is used to convey information about location, orientation, density and distance by use of the vibration alarm with varying frequencies and patterns to help understand the physical environment. User trials have elicited positive response from the users. Haptics integrated into a multi-modal navigation system and other mobile location based services provides more usable, less distracting but more effective interaction than conventional systems

    Integrating Haptic Feedback into Mobile Location Based Services

    Get PDF
    Haptics is a feedback technology that takes advantage of the human sense of touch by applying forces, vibrations, and/or motions to a haptic-enabled device such as a mobile phone. Historically, human-computer interaction has been visual - text and images on the screen. Haptic feedback can be an important additional method especially in Mobile Location Based Services such as knowledge discovery, pedestrian navigation and notification systems. A knowledge discovery system called the Haptic GeoWand is a low interaction system that allows users to query geo-tagged data around them by using a point-and-scan technique with their mobile device. Haptic Pedestrian is a navigation system for walkers. Four prototypes have been developed classified according to the user’s guidance requirements, the user type (based on spatial skills), and overall system complexity. Haptic Transit is a notification system that provides spatial information to the users of public transport. In all these systems, haptic feedback is used to convey information about location, orientation, density and distance by use of the vibration alarm with varying frequencies and patterns to help understand the physical environment. Trials elicited positive responses from the users who see benefit in being provided with a “heads up” approach to mobile navigation. Results from a memory recall test show that the users of haptic feedback for navigation had better memory recall of the region traversed than the users of landmark images. Haptics integrated into a multi-modal navigation system provides more usable, less distracting but more effective interaction than conventional systems. Enhancements to the current work could include integration of contextual information, detailed large-scale user trials and the exploration of using haptics within confined indoor spaces

    Mobile map client API : design and implementation for Android

    Get PDF
    The fast development of computational power of the mobile phone makes it a suitable platform for running map applications. Both public and field working professionals can benefit from easy access to a mobile map client application with features such as route planning, location based services and simple GIS operations. This master's thesis describes the mobile operating system (OS) Android from a geographic information aspect and relates it to other major mobile OS. Available map client application programming interfaces (API) are investigated. It is concluded that Android is a good platform choice for implementing mobile map applications. But there is need of a generic open source API for Android. Such an API is implemented, resulting in a good performing map client. Though it needs additional development to perform all features aimed for in the suggested API design.PopulÀrvetenskaplig sammanfattning: Dagens datorlika mobiltelefoner lÀmpar sig utmÀrkt för att visa olika typer av kartor. Det Àr inte svÄrt att hitta tillÀmpningar för bÄde privatpersoner och professionella anvÀndare med behov som att till exempel hitta lÀmpliga fÀrdvÀgar eller visa information om platsen man befinner sig pÄ. Det hÀr examensarbetet gÄr ut pÄ att undersöka hur geografisk data kan behandlas och visas som kartor pÄ Android-mobiler. MÄlet Àr att skapa ett generellt programmeringsverktyg som ska kunna anvÀndas för att snabbt och enkelt kunna utveckla specialiserade kartapplikationer för Android. Ett sÄdant verktyg kallas inom databranschen för API, vilket stÄr för Application Programming Interface. Ett API Àr ett grÀnssnitt som ger programmerare smidig tillgÄng till grundlÀggande funktioner i ett system eller en typ av applikation. I det hÀr fallet fÄr programmeraren tillgÄng till grundlÀggande kartfunktioner, som t.ex. kartdataladdning eller panorering och zoom, utan att behöva programmera hela logiken bakom dessa funktioner. IstÀllet kan programmeraren fokusera sitt arbete pÄ de delarna som gör just den kartapplikationen unik. Arbetet Àr uppdelat i en undersökande del för att klarlÀgga var utvecklingen av tekniken befinner sig idag och vilka liknande försök som gjorts tidigare och en mer praktisk utvecklingsdel med mÄlet att implementera ett API för kartapplikationer pÄ Android. I undersökningen jÀmförs Android med andra mobila plattformar, t.ex. Apples iPhone och Nokias Symbian. Det konstateras att Android stÄr sig bra i konkurens med de andra och lÀmpar sig vÀl för kartapplikationer men att det skulle behövas ett generellt kartverktyg som inte Àr sÄ hÄrt styrt som Google maps, som Àr det vanligaste kartverktyget för Android. För att tydliggöra vad API:et borde innehÄlla och klara av att utföra gjordes först en teoretisk modell av dess olika delar. De viktigaste delarna, t.ex. dataladdning och anvÀndargrÀnssnitt med kartbildsvisning, panorering och zoom, implementerades sedan för att kunna testköras och vidareutvecklas pÄ en Android-mobil. En demoapplikation utvecklades för att demonstrera anvÀndningen av API:et. Resultatet Àr ett verktyg för ett energibolags servicepersonal att ha med sig i fÀlt för att se deras fjÀrrvÀrmenÀts geografiska utstrÀckning och info om nÀtets olika delar, kopplingar och kunder.Scientific summary: The fast development of computational power of the mobile phone have made it a suitable platform for running map applications. Both public and field working professionals can benefit from easy access to a mobile map client application with features such as route planning, location based services and simple GIS operations. This master's thesis describes the mobile operating system (OS) Android from a geographic information aspect and relates it to other major mobile OS. A map client application programming interfaces (API) is implemented, resulting in a good performing map client. Though it needs additional development to perform all features aimed for in the suggested API design. The study is divided into a state-of-the-art investigation of available technology, and an effort to design and implement a map client API for Android. The investigation was made by referencing available scientific papers, technical articles and websites. Available OS's and API's are investigated. It is concluded that Android is a good platform choice for implementing mobile map applications. But there is need of a generic open source API for Android. Another objective of the study was to compare a map client running as a web application to the native client developed regarding performance. Unfortunately no suiting API for setting up the web application was found. Since then the OpenLayers community have made a great effort for running OpenLayers clients on mobile devices, which would have been an ideal choice for doing the comparison. The work on the API contains a theoretical model which is partly implemented. The aim of the model is to define the overall functionality, some specialized features and cohesive data structures. Then the base functionality, such as data loading, map drawing, panning and zooming, was implemented. The implementation was carried out in an iterative manner. Starting with complementing a basic, incomplete open source map API to gain understanding of mobile map API design and avoid re-inventing the wheel. Added was support for coordinate systems and projections other than WGS 84 Web Mercator (EPSG 4326), better Web Map Service (WMS) support, vector data loading and improved responsiveness when loading data. A demo application was put together in order to test performance on the hardware emulator integrated in the Android SDK and on a real device, Motorola Milestone running Android version 2.1. The scenario for the demo application is a district heating pipe system, an useful field application for a city energy company. The application shows a raster background map loaded from a tiled WMS with the pipe system as vector overlays loaded from a custom Keyhole Markup Language (KML) service. The vector data is click-able in order to show information about different parts of the pipe system

    Sonification System of Maps for Blind

    Get PDF

    Emerging technologies for learning report (volume 3)

    Get PDF

    Compact gml: merging mobile computing and mobile cartography

    Get PDF
    The use of portable devices is moving from "Wireless Applications", typically implemented as browsing-on-the-road, to "Mobile Computing", which aims to exploit increasing processing power of consumer devices. As users get connected with smartphones and PDAs, they look for geographic information and location-aware services. While browser-based approaches have been explored (using static images or graphics formats such as Mobile SVG), a data model tailored for local computation on mobile devices is still missing. This paper presents the Compact Geographic Markup Language (cGML) that enables design and development of specific purpose GIS applications for portable consumer devices where a cGML document can be used as a spatial query result as well
    • 

    corecore