5 research outputs found

    A wearable skin-stretching tactile interface for human-robot and human-human communication

    Get PDF

    Optimization-Based wearable tactile rendering

    Get PDF
    Novel wearable tactile interfaces offer the possibility to simulate tactile interactions with virtual environments directly on our skin. But, unlike kinesthetic interfaces, for which haptic rendering is a well explored problem, they pose new questions about the formulation of the rendering problem. In this work, we propose a formulation of tactile rendering as an optimization problem, which is general for a large family of tactile interfaces. Based on an accurate simulation of contact between a finger model and the virtual environment, we pose tactile rendering as the optimization of the device configuration, such that the contact surface between the device and the actual finger matches as close as possible the contact surface in the virtual environment. We describe the optimization formulation in general terms, and we also demonstrate its implementation on a thimble-like wearable device. We validate the tactile rendering formulation by analyzing its force error, and we show that it outperforms other approaches

    Master of Science

    Get PDF
    thesisHaptic interactions with smartphones are generally restricted to vibrotactile feedback that offers limited distinction between delivered tactile cues. The lateral movement of a small, high-friction contactor at the fingerpad can be used to induce skin stretch tangent to the skin's surface. This method has been demonstrated to reliably communicate four cardinal directions with 1 mm translations of the device's contactor, when finger motion is properly restrained. While earlier research has used a thimble to restrain the finger, this interface has been made portable by incorporating a simple conical hole as a finger restraint. An initial portable device design used RC hobby servos and the conical hole finger restraint, but the shape and size of this portable device wasn't compatible with smartphone form factors. This design also had significant compliance and backlash that must be compensated for with additional control schemes. In contrast, this thesis presents the design, fabrication, and testing of a low-profile skin-stretch display (LPSSD) with a novel actuation design for delivering complex tactile cues with minimal backlash or hysteresis of the skin contactor or "tactor." This flatter mechanism features embedded sensors for fingertip cursor control and selection. This device's nonlinear tactor motions are compensated for using table look-up and high-frequency open-loop control to create direction cues with 1.8 mm radial tactor displacements in 16 directions (distributed evenly every 22.5°) before returning to center. Two LPSSDs are incorporated into a smartphone peripheral and used in single-handed and bimanual tests to identify 16 directions. Users also participated in "relative" identification tests where they were first provided a reference direction cue in the forward/north direction followed by the cue direction that they were to identify. Tests were performed with the user's thumbs oriented in the forward direction and with thumbs angled inward slightly, similar to the angledthumb orientation console game controllers. Users are found to have increased performance with an angled-thumb orientation. They performed similarly when stimuli were delivered to their right or left thumbs, and had significantly better performance judging direction cues with both thumbs simultaneously. Participants also performed slightly better in identifying the relative direction cues than the absolute
    corecore