1,274 research outputs found

    Fingerprinting Smart Devices Through Embedded Acoustic Components

    Full text link
    The widespread use of smart devices gives rise to both security and privacy concerns. Fingerprinting smart devices can assist in authenticating physical devices, but it can also jeopardize privacy by allowing remote identification without user awareness. We propose a novel fingerprinting approach that uses the microphones and speakers of smart phones to uniquely identify an individual device. During fabrication, subtle imperfections arise in device microphones and speakers which induce anomalies in produced and received sounds. We exploit this observation to fingerprint smart devices through playback and recording of audio samples. We use audio-metric tools to analyze and explore different acoustic features and analyze their ability to successfully fingerprint smart devices. Our experiments show that it is even possible to fingerprint devices that have the same vendor and model; we were able to accurately distinguish over 93% of all recorded audio clips from 15 different units of the same model. Our study identifies the prominent acoustic features capable of fingerprinting devices with high success rate and examines the effect of background noise and other variables on fingerprinting accuracy

    Micro Electrostatic Actuation of a Silicon Diaphragm

    Get PDF
    There are a number of applications, from hearing aids to microfluidic pumps, which utilize micro-scale actuating diaphragms. These MEMS (micro-electromechanical system) devices can be actuated by electrostatic forces, which utilize an induced electric field to pull two charged plates towards one another. Such devices were fabricated and electrostatic actuation of the diaphragms was performed to analyze its viability as a micro-speaker. The long-term performance of such products requires adequate diaphragm deflection to create audible pressure waves with relatively low maximum stresses to ensure a high cycle fatigue life. With these requirements, initial calculations and FEA (finite element analysis) were performed to establish the optimal square diaphragm side length combined with an attainable gap between electrodes to achieve an audible response. Optical and acoustic testing was then performed on 4, 5, and 7 mm side length square diaphragms with 10 μm thickness and a 70 μm electrode gap. For the 5 mm device and a 300 V applied potential, deflection was calculated to be 4.12 μm theoretically and 3.82 μm using FEA, although deflections based on optical test data averaged 30.53μm under DC conditions. The DAQ used for optical testing was extremely limiting due to its fastest sampling interval of 89 milliseconds, so this testing was performed at 2 and 5 Hz. Although the 7 mm device generated audible noise at 300 V and 2 kHz when the observer was within approximately 6 inches of the device, acoustic testing with a microphone placed 1 inch from the device did not yield any definitive results

    Design, fabrication and test of integrated micro-scale vibration based electromagnetic generator

    No full text
    This paper discusses the design, fabrication and testing of electromagnetic microgenerators. Three different designs of power generators are partially microfabricated and assembled. Prototype A having a wire-wound copper coil, Prototype B, an electrodeposited copper coil both on a Deep Reactive Ion etched (DRIE) silicon, beam and paddle. Prototype C uses moving NdFeB magnets in between two microfabricated coils. The integrated coil, paddle and beam were fabricated using standard micro-Electro-Mechanical Systems (MEMS) processing techniques. For Prototype A, the maximum measured power output was 148 nW at 8.08 kHz resonant frequency and 3.9 m/s2 acceleration. For prototype B, the microgenerator gave a maximum load power of 23 nW for an acceleration of 9.8 m/s2, at a resonant frequency of 9.83 kHz. This is a substantial improvement in power generated over other microfabricated silicon based generators reported in literature. This generator has a volume of 0.1 cm3 which is lowest of all the silicon based microfabricated electromagnetic power generators reported. To verify the potential of integrated coils in electromagnetic generators, Prototype C was assembled. This generated a maximum load power of 5

    A Digital Microphone Array for Distant Speech Recognition

    Get PDF
    In this paper, the design, implementation and testing of a digital microphone array is presented. The array uses digital MEMS microphones which integrate the microphone, amplifier and analogue to digital converter on a single chip in place of the analogue microphones and external audio interfaces currently used. The device has the potential to be smaller, cheaper and more flexible than typical analogue arrays, however the effect on speech recognition performance of using digital microphones is as yet unknown. In order to evaluate the effect, an analogue array and the new digital array are used to simultaneously record test data for a speech recognition experiment. Initial results employing no adaptation show that performance using the digital array is significantly worse (14\% absolute WER) than the analogue device. Subsequent experiments using MLLR and CMLLR channel adaptation reduce this gap, and employing MLLR for both channel and speaker adaptation reduces the difference between the arrays to 4.5\% absolute WER

    TickTock: Detecting Microphone Status in Laptops Leveraging Electromagnetic Leakage of Clock Signals

    Full text link
    We are witnessing a heightened surge in remote privacy attacks on laptop computers. These attacks often exploit malware to remotely gain access to webcams and microphones in order to spy on the victim users. While webcam attacks are somewhat defended with widely available commercial webcam privacy covers, unfortunately, there are no adequate solutions to thwart the attacks on mics despite recent industry efforts. As a first step towards defending against such attacks on laptop mics, we propose TickTock, a novel mic on/off status detection system. To achieve this, TickTock externally probes the electromagnetic (EM) emanations that stem from the connectors and cables of the laptop circuitry carrying mic clock signals. This is possible because the mic clock signals are only input during the mic recording state, causing resulting emanations. We design and implement a proof-of-concept system to demonstrate TickTock's feasibility. Furthermore, we comprehensively evaluate TickTock on a total of 30 popular laptops executing a variety of applications to successfully detect mic status in 27 laptops. Of these, TickTock consistently identifies mic recording with high true positive and negative rates.Comment: 18 pages, 27 figures, ACM CCS'22 conferenc

    Design of a nurse calling system with real time indoor location capabilities

    Get PDF
    The main driver of this project has been to design a prove of concept of a device that allows live voice communication between patients and medical staff and the capability to locate in real time patients in an enclosed environment. The author of this project had an initial constraint it was supplied by the project director supplied for this project a DWM1001-DEV Module Development Board which provides accurate positioning thanks to its wireless Real Time Location System. After a study of the problem, a selection of components, both hardware and software were selected. The sound system is composed of a I2S Microphone SPH0645 for real time audio capturing, an I2S Amplifier Breakout board MAX98357A and a generic 8ohms speaker. The patient interface component is a button used to trigger communication. For the development of the software the Espressif IoT Development Framework was used, it provides APIs for the user to program the ESP32. The ESP-IDF was installed on VSCode IDE. For debugging the system, we used a J-Link PRO with the Eclipse IDE. The ESP32 communicates with a python-based server using a Wi-Fi network, the communication is based on the UDP protocol. The result is a prototype that showcase that a final product based on this system is feasible, it presents great autonomy and excellent real time communication features. Further lines of work are described, and the presented system is flexible enough to integrate them
    corecore