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ABSTRACT

In this paper, the design, implementation and testing of a digital mi-
crophone array is presented. The array uses digital MEMS micro-
phones which integrate the microphone, amplifier and analogue to
digital converter on a single chip in place of the analogue micro-
phones and external audio interfaces currently used. The device has
the potential to be smaller, cheaper and more flexible than typical
analogue arrays, however the effect on speech recognition perfor-
mance of using digital microphones is as yet unknown. In order
to evaluate the effect, an analogue array and the new digital array
are used to simultaneously record test data for a speech recognition
experiment. Initial results employing no adaptation show that per-
formance using the digital array is significantly worse (14% abso-
lute WER) than the analogue device. Subsequent experiments using
MLLR and CMLLR channel adaptation reduce this gap, and em-
ploying MLLR for both channel and speaker adaptation reduces the
difference between the arrays to 4.5% absolute WER.

Index Terms— digital microphone array, speech recognition,
WSJCAM0, MEMS microphone

1. INTRODUCTION

Automatic Speech Recognition (ASR) research has focused on tasks
in which the speech is recorded using close-talking headset micro-
phones or from telephone handsets. In recent years, however, there
has been an increasing focus on distant speech recognition [1] in
which the speech is captured by multiple distant microphones, typi-
cally in an array configuration. Work on distant speech recognition
has been inspired by some recent intense efforts in the recognition
of speech in meetings and in seminars [2, 3] and through interna-
tional evaluation campaigns such as the NIST RT evaluations [4] or
the Speech Separation Challenge II (http://homepages.inf.
ed.ac.uk/mlincol1/SSC2/). This work has focused largely
on the use of microphone arrays with a known geometry, to which
beamforming algorithms may be applied in order to provide an en-
hanced version of the input based on the location of the speaker.

The work of Omologo [5] and McCowan [6] indicated that mi-
crophone arrays can be an effective alternative to close-talking mi-
crophones for single talker ASR in environments characterised by
noise or multiple acoustic sources. For multitalker environments
such as meetings, talker overlap is extremely common. In such en-
vironments, the directional nature of the array allows discrimina-
tion between speakers leading to improved ASR performance for
overlapping speech [7]. More recently, large vocabulary ASR sys-
tems [8, 9] have been developed for the recognition of multiparty
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speech in meetings, with a word error rate (WER) only a few per-
cent higher than that obtained using high quality close-talking mi-
crophones.

A major motivation for the use of microphone arrays to record
speech for speech recognition is that of intelligent instrumented en-
vironments. In such environments, multiple distant microphones are
used to capture the acoustic scene: a pervasive vision for such re-
search is that the capture devices are lightweight, cheap, low power
and have the potential to be massively scalable. To date, microphone
arrays for instrumented environments have been constructed using
discrete analogue microphones (typically omni directional lapel mi-
crophones). Although such microphones can provide a very high
quality signal, they bring a number of disadvantages:

• Cost: individual microphones typically cost at least several
tens of dollars.

• Size: the microphones themselves may be relatively bulky
requiring an enclosure or mount.

• Audio interface: the analogue signal from the microphones
requires amplification and analogue to digital conversion be-
fore processing by computer. These steps are typically inte-
grated in the audio interface, making the device expensive,
relatively high power, and too large to be easily portable.

Recent work has attempted to integrate the components of an array
based on analogue microphones in a single unit, and has shown
promising performance in a simple speech recognition experi-
ment [10]. However the system still requires amplifiers and analogue
to digital converters (ADCs), which means that it is still relatively
bulky and expensive.

MEMS (Micro Electro Mechanical System) microphones are es-
sentially a ‘microphone on a chip’ with the pressure sensitive mem-
brane being etched directly onto the silicon, and usually accompa-
nied by a matched pre-amplifier on the same chip. Research and
development of MEMS microphones has been ongoing for some 20
years in order to manufacture a product suitable for customer ap-
plications. Requirements such as operation at standard supply volt-
ages [11], support of surface mount packaging [12], use of standard
CMOS processes during manufacture [13], and acceptable signal to
noise ratio [14] have recently been realised and have led to a break-
through in MEMS microphone production and usage today. Recent
advances in MEMS microphone technology have resulted in the in-
tegration of the ADC on the same chip as the microphone and am-
plifier, producing a digital microphone in which the output of the
chip is a Pulse Density Modulated (PDM) version of the incident
acoustic signal. A microphone array made from such devices would
not require external amplifiers or ADCs and the mass production of
MEMS chips would result in an extremely low cost for the array.
Because the audio signal is immediately converted to the digital do-
main, the system has the potential to be more robust to noise than its
analogue alternative. The array could be made in an extremely small
form factor, or directly integrated into the PCB of a host device - for
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Fig. 1. Overview of Digital MEMS Microphone Array Architecture

instance the MEMS chips could be mounted on the outer edge of an
LCD display for integration in laptops, or in a conference phone for
use in meetings.

This paper describes the design and implementation of a proto-
type eight element microphone array built using digital MEMS mi-
crophones. To our knowledge no similar arrays of more than two
elements have been reported. We have carried out large vocabu-
lary speech recognition experiments, comparing results using speech
captured by the digital microphone array with speech captured us-
ing an existing analogue microphone array. Our speech recognition
experiments have built upon the protocol developed by Lincoln et
al. [15], using the WSJCAM0 corpus [16] for training and the mi-
crophone array data for development and testing. We report results
that indicate that if adaptation algorithms (such as MLLR) are not
applied, then the digital microphone array results in much higher
word error rates than the analogue array. However, after adaptation
(using mean-only MLLR), we find that the gap in accuracy between
the digital and analogue arrays is much smaller.

2. THE DIGITAL MICROPHONE ARRAY

A schematic overview of the digital microphone array architecture
is shown in figure 1. The system comprises three main components:
the microphone array itself, a Xilinx FPGA and a Texas Instruments
USB streaming controller.

2.1. The Array

The array contains eight omnidirectional digital MEMS micro-
phones (Knowles Acoustics SPM0205HD4) mounted on small
daughter boards, which are located equidistantly around a 20cm
diameter circle on a larger, circular PCB. The larger PCB provides
connections to each of the microphone outputs and clock inputs.
Mounting the microphones on daughter boards allows the micro-
phones to be easily replaced if they do not match the published
specifications. Figure 2 shows the constructed microphone array.

(a) Microphones on daughter boards (b) Complete microphone array

Fig. 2. The digital MEMS microphone array

2.2. FPGA

We use a Xilinx Spartan 3A FPGA in the implementation of the
digital microphone array. This device was chosen because it is
large enough to implement all the required functionality required
but is small enough to be simulated and programmed using freely
available software. The FPGA performs two functions. The ADC
on each MEMS chip is a sigma-delta oversampling device, out-
putting a binary PDM signal at 64fs = 1.024MHz, which is 64
times the required sampling frequency, fs = 16kHz. This signal
is downsampled and converted to PCM before it is transmitted over
an AC’97 interface to the USB streaming controller. The FPGA
performs this downsampling and format conversion and also imple-
ments the AC’97 interface between the input audio signals and the
USB streaming interface. The downsampling is performed using a
series of decimation filters. The first, a Cascaded Integrator-Comb
(CIC) filter, downsamples from 64fs to 8fs. A series of 3 FIR filters
is then used to sequentially reduce the sample rate by a factor of 2.
The filters are designed using the Matlab filter design toolbox and
Verilog HDL code generated by the Matlab filter design HDL coder
for implementation on the FPGA. Because of the restricted number
of multipliers on the chip, the FIR filters are implemented in stereo,
with the individual microphone channels being multiplexed before
the filtering operation, and de-multiplexed after. The PCM data at
the required sample frequency is buffered before being passed to the
AC’97 interface. The FPGA also generates the clock signal for the
microphones and implements a simple volume control which can be
adjusted via the AC’97 interface. The data flow on the Xilinx chip
is shown in figure 3 and further details can be found in [17].

2.3. USB Streaming Interface

The Texas Instruments TUSB3200A USB streaming controller is
used as the interface between the FPGA, which delivers audio via the
AC’97 interface, and the PC. The device is used on the TI evaluation
board and we extended the supplied firmware (designed for stereo
playback and mono recording) to allow the simultaneous recording
of 8 channels. When connected to the PC, the device appears as an
eight channel audio input device and can be accessed by standard
audio recording software.1

3. SPEECH RECOGNITION EXPERIMENTS

In order to investigate whether the use of digital microphones af-
fects the performance of the array for speech recognition tasks, talk-
ers were simultaneously recorded using both the digital and an ana-
logue array and their performance on a large vocabulary speaker-
independent speech recognition task was compared.

3.1. Recording Setup and Task

The recordings were made in the Instrumented Meeting Room in
the University of Edinburgh. The analogue array consisted of 8
Sennheiser MKE-2P omnidirectional lapel microphones arranged in
a circular configuration of 20cm diameter (identical to the config-
uration of the digital array). The array was connected to a PC via
a MOTU 896 HD mic pre-amp and firewire audio interface, and

1In practice both Linux and Windows operating systems do not currently
recognise 8-channel USB audio devices without additional driver code. We
used a time domain multiplexing system, in which up to twelve 16 kHz chan-
nels were multiplexed in four 48 kHz slots (Ubuntu Linux could recognise
up to 7 channels), with demultiplexing carried out in software on the PC.



Fig. 3. Digital MEMS microphone array DSP implementation on FPGA

Plogue Bidule software was used to record the analogue array to
disk. The system outlined in section 2 was used for the digital
recordings. The arrays were placed on the meeting room table, either
side of a laptop computer which shows the prompts for the subject
to read. The subjects sat directly in front of the laptop, equidistant
from each array. The analogue system records at 48KHz, and Mat-
lab’s resample command was used to downsample the audio files
to 16KHz before processing. The recording setup was based on that
used for the MC-WSJ-AV recordings [15].2

Six male and six female speakers were recorded reading sen-
tences from the WSJCAM0 [16] test and development sets. All par-
ticipants were native British English speakers. The set of prompts for
each speaker was selected from one of the sets used in WSJCAM0,
and typically contained 17 TIMIT style sentences (for adaptation),
40 sentences from the 5,000 word (closed vocabulary) sub corpus of
WSJCAM0 and 40 sentences from the 20,000 word (open vocabu-
lary) sub corpus. Each audio channel was recorded as a single wav
file, and the files were manually split into individual sentences for
recognition.

3.2. Beamforming

Each array produces 8 wav files, one for each microphone, and a
beamforming frontend system is then used to enhance the files prior
to recognition. The beamforming frontend is identical to that used by
the AMI entry to the Spring 2005 NIST Rich Transcription evalua-
tion and is fully described in [18]. It consists of a Wiener filter which
removes stationary noise from each channel, followed by a filter and
sum beamformer. Delay estimates for the filters are calculated on a
frame by frame basis by identifying the peak in the generalised cross
correlation between channels, meaning that the beamformer effec-
tively tracks and enhances the loudest sound source in the room.

3.3. Recogniser

The speech recognition system is a standard GMM/HMM recogniser
developed using HTK on the WSJCAM0 training data. The sys-
tem consists of approximately 11,000 tied-state triphones with three
emitting states per triphone and 6 mixture components per state. 52-
element feature vectors were used, comprising 13 MFCCs (includ-

2Note that the Instrumented Meeting Room has changed location since
[15], and the new room is much less reverberant.

ing the 0th cepstral coefficient) with their first, second and third order
derivatives. The vocabulary was the standard 5,000 word vocabulary
used for the WSJ0 5,000 word closed vocabulary task. We used the
standard MIT-Lincoln Labs 5k Wall Street Journal trigram language
model, and pronunciations were obtained from the dictionary gen-
erated for the AMI NIST RT05S system [18]. The baseline system,
with no adaptation, gives 9.9% WER on the WSJCAM0 si dt5a
5,000 word task.

Due to time constraints, experiments were conducted on the 5k
word sentences only. Preliminary experiments on the 20k task show
similar patterns of performance, albeit with increased WER due to
the increased vocabulary size.

3.4. Baseline Results

The top row of table 1 gives baseline word error rates for the ana-
logue and digital arrays. The results show that the digital array
recordings result in a substantially increased WER compared with
that obtained from the analogue array. The signal to noise ratio of
the digital microphones is lower than that of the analogue micro-
phones and this, coupled with the lower performance of the on chip
amplifiers and ADCs compared with those used for the analogue ar-
ray, means that the audio from the digital array is less well matched
to the recognition models which are trained on speech from high
quality analogue headset microphones. This results in the observed
decrease in accuracy.

3.5. Adaptation

In order to address the mismatch between training and test data,
an experiment was conducted in which the recognition models are
adapted to the acoustic properties of the recordings. A two pass
maximum likelihood linear regression (MLLR) [19] adaptation of
the model means was used. The first pass computes a single global
transform for all model mean vectors. This transform is then used
to compute improved frame/state alignments for the second pass,
which computes more specific transforms using a regression class
tree generated from the training data. We also performed constrained
MLLR (CMLLR) adaptation [20] of the means and variances.

We adapted the models to both the channel and to individual
speakers. To perform channel adaptation, we pooled the 17 adapta-
tion sentences recorded by each speaker to produce transforms spe-



Table 1. %W.E.R on 5K WSJCAM0 task for 6 male and 6 female speakers

Male Female Average
Adaptation Technique Analogue Digital ∆ Analogue Digital ∆ Analogue Digital ∆

None 30.2 40.7 10.5 36.9 55.1 18.2 33.6 47.9 14.3
MLLR Channel 22.6 27.4 4.7 22.2 32.2 10.0 22.4 29.8 7.4

CMLLR Channel 21.3 26.3 5.0 20.7 29.7 9.0 21.0 28.0 7.0
MLLR Speaker and Channel 18.2 20.7 2.5 19.4 25.9 6.6 18.8 23.3 4.5

cific to the digital array and to the analogue array. Recognition was
then performed on the 5k word data from the matched array and the
results are shown as ‘Channel’ in table 1. As expected, the adapta-
tion gives decreases in WER for both analogue and digital arrays.
More importantly, the absolute difference in WER between the ana-
logue and digital arrays was reduced by nearly 50%, from 14.3% to
7.4%. This suggests that, although the quality of the output from the
digital array is lower than that of the analogue array, and therefore
not as closely matched to the close talking models, it still contains
much of the speech information required to perform recognition pro-
viding the models are matched to the microphones. Performing CM-
LLR channel adaptation resulted in further decreases in WER. Fi-
nally we performed experiments in which the models were adapted
to the speaker and to the channel, by defining the adaptation sets as
those sentences recorded from the same speaker on the same array.
In this case the absolute difference in WER between the analogue
and digital arrays was further reduced by about 40% to 4.5%.

4. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the design and implementation of
an 8 element microphone array using digital MEMS microphones,
the first of its kind. The array has been tested in terms of the word
error rate it achieves on a speech recognition task. Although the
training data was recorded using high quality analogue microphones
we found that recognition accuracy from the digital array was close
(although significantly worse) to that achieved from an analogue ar-
ray when standard channel and speaker adaptation techniques were
used. The device has the potential to be smaller, cheaper and more
flexible than typical analogue arrays.
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