1,413 research outputs found

    Design of a Hybrid (Wired/Wireless) Acquisition Data System for Monitoring of Cultural Heritage Physical Parameters in Smart Cities

    Full text link
    Preventive conservation represents a working method and combination of techniques which helps in determining and controlling the deterioration process of cultural heritage in order to take the necessary actions before it occurs. It is acknowledged as important, both in terms of preserving and also reducing the cost of future conservation measures. Therefore, long-term monitoring of physical parameters influencing cultural heritage is necessary. In the context of Smart Cities, monitoring of cultural heritage is of interest in order to perform future comparative studies and load information into the cloud that will be useful for the conservation of other heritage sites. In this paper the development of an economical and appropriate acquisition data system combining wired and wireless communication, as well as third party hardware for increased versatility, is presented. The device allows monitoring a complex network of points with high sampling frequency, with wired sensors in a 1-wire bus and a wireless centralized system recording data for monitoring of physical parameters, as well as the future possibility of attaching an alarm system or sending data over the Internet. This has been possible with the development of three board's designs and more than 5000 algorithm lines. System tests have shown an adequate system operation.The authors acknowledge the collaboration of Rosa Maria Rodriguez y Belen Villanueva, superior and management technicians of Blasco Ibanez Museum-House respectively. This work was partially supported by the Spanish Government (Ministerio de Economia y Competitividad) under projects HAR2013-47895-C2-1-P and HAR2013-47895-C2-2-P.García Diego, FJ.; Esteban, B.; Merello Giménez, P. (2015). Design of a Hybrid (Wired/Wireless) Acquisition Data System for Monitoring of Cultural Heritage Physical Parameters in Smart Cities. Sensors. 15(4):7246-7266. doi:10.3390/s150407246S7246726615

    Hybrid Data Acquisition and Analysis System for Flowing Medium Lasers

    Get PDF
    The medium gas lasers involves in-situ generation of the lasing medium, hence are associated with several complex processes including mixing of pumping and lasing species, energy exchange between the species, heat generation during reaction and its influence on the flow domain to list a few. Thus, the characterisation of lasing medium, condition of operation of individual critical subsystems and corresponding phenomenon thereof is essential in real time. It is here that a customised data acquisition and analysis system (DAAS) plays a key role. The paper dwells on the realisation of a customised hybrid DAAS with a master-slave architecture, which is portable and provides remote system operation. The noteworthy aspects of the developed DAAS include capability to handle close to 150 channels [64 analog input, 64 digital output, 5 analog output and 17 digital input] simultaneously with varied sampling rates requirement ranging from 100 samples/s to 200 k samples/s, modularity in design enabling scalability. Further, the efficacy of the developed DAAS has been tested by conducting several real time experiments with an existing chemical oxygen iodine laser source with a mass flow rate of 2.3 moles.s-1 both from close ranges and at line of sight remote distances of up to 80 m and nearly 35 m with obstacles

    Real Time Flow Control System for Precise Gas Feed in COIL

    Get PDF
    This paper reports development of a real time flow control system for precise, controlled and uniform gas feed to a flowing medium Chemical Oxygen Iodine Laser (COIL). The optimal operation of this prominent laser depends upon the desired supply of gas constituents such as nitrogen (N2), chlorine (Cl2) and iodine (I2) to achieve adequately mixed laser gas. The laser also demands real time variation of flow rates during gas constituent transitions in order to maintain stabilized pressures in critical subsystems. Diluent nitrogen utilized for singlet oxygen transport is termed as primary buffer gas and that for iodine transport is termed as secondary buffer gas (with main and bypass components). Also, nitrogen in precise flows is used for mirror blowing, nozzle curtain, cavity bleed and diffuser startup. A compact hybrid data acquisition system (Hybrid DAS) for precise flow control using LabVIEW 2014 platform has been developed. The supported flow ranges may vary from few mmole.s-1 to few hundred mmole.s-1. The estimated relative uncertainty in the largest gas component i.e. primary buffer gas feed is nearly 0.7%. The implementation of in-operation variation using flow ramp enables swift stabilization of singlet oxygen generator pressures critical for successful COIL operation. The performance of Hybrid DAS is at par with fully wired DAS providing the crucial benefit of remote field operation at distances of nearly 80m in line of sight and 35m with obstacle

    An energy-efficient internet of things (IoT) architecture for preventive conservation of cultural heritage

    Full text link
    [EN] Internet of Things (IoT) technologies can facilitate the preventive conservation of cultural heritage (CH) by enabling the management of data collected from electronic sensors. This work presents an IoT architecture for this purpose. Firstly, we discuss the requirements from the artwork standpoint, data acquisition, cloud processing and data visualization to the end user. The results presented in this work focuses on the most critical aspect of the architecture, which are the sensor nodes. We designed a solution based on LoRa and Sigfox technologies to produce the minimum impact in the artwork, achieving a lifespan of more than 10 years. The solution will be capable of scaling the processing and storage resources, deployed either in a public or on-premise cloud, embedding complex predictive models. This combination of technologies can cope with different types of cultural heritage environments.This work was partially funded by the Generalitat Valenciana project AICO/2016/058 and by the Plan Nacional de I+D, Comision Interministerial de Ciencia y TecnologiA (FEDER-CICYT) under the project HAR2013-47895-C2-1-P.Perles Ivars, A.; Pérez Marín, E.; Mercado Romero, R.; Segrelles Quilis, JD.; Blanquer Espert, I.; Zarzo Castelló, M.; García Diego, FJ. (2018). An energy-efficient internet of things (IoT) architecture for preventive conservation of cultural heritage. Future Generation Computer Systems. 81:566-581. https://doi.org/10.1016/j.future.2017.06.030S5665818

    Intelligent Municipal Heritage Management Service in a Smart City: Telecommunication Traffic Characterizationand Quality of Service

    Full text link
    [EN] The monitoring of cultural heritage is becoming common in cities to provide heritage preservation and prevent vandalism. Using sensors and video cameras for this task implies the need to transmit information. In this paper, the teletraffic that cameras and sensors generate is characterized and the transmissions¿ influence on the municipal communications network is evaluated. Then, we propose models for telecommunication traffic sources in an intelligent municipal heritage management service inside a smart sustainable city. The sources were simulated in a smart city scenario to find the proper quality of service (QoS) parameters for the communication network, using Valencia City as background. Specific sensors for intelligent municipal heritage management were selected and four telecommunication traffic sources were modelled according to real-life requirements and sensors datasheet. Different simulations were performed to find the proper CIR (Committed Information Rate) and PIR (Peak Information Rate) values and to study the effects of limited bandwidth networks. Packet loss, throughput, delay, and jitter were used to evaluate the network¿s performance. Consequently, the result was the selection of the minimum values for PIR and CIR that ensured QoS and thus optimized the traffic telecommunication costs associated with an intelligent municipal heritage management service.This work was partially supported by Spanish Government Projects TIN2013-47272-C2-1-R and TEC2015-71932-REDTRodríguez-Hernández, MA.; Jiang, Z.; Gomez-Sacristan, Á.; Pla, V. (2019). Intelligent Municipal Heritage Management Service in a Smart City: Telecommunication Traffic Characterizationand Quality of Service. Wireless Communications and Mobile Computing (Online). 1-10. https://doi.org/10.1155/2019/8412542S11

    Monitoring Heritage Buildings with Open Source Hardware Sensors: A Case Study of the Mosque-Cathedral of Córdoba

    Get PDF
    A number of physical factors can adversely affect cultural heritage. Therefore, monitoring parameters involved in the deterioration process, principally temperature and relative humidity, is useful for preventive conservation. In this study, a total of 15 microclimate stations using open source hardware were developed and stationed at the Mosque-Cathedral of Córdoba, which is registered with UNESCO for its outstanding universal value, to assess the behavior of interior temperature and relative humidity in relation to exterior weather conditions, public hours and interior design. Long-term monitoring of these parameters is of interest in terms of preservation and reducing the costs of future conservation strategies. Results from monitoring are presented to demonstrate the usefulness of this system

    Development of reversible intelligent prosthesis for the conservation of sculptures. A case study

    Full text link
    [EN] The application of preventive conservation measures after restoration processes is a sustainable method to control and mitigate possible deterioration and damage to Cultural Heritage. Preservation requires monitoring physical parameters that influence the monument. This document presents the development of a versatile hybrid system based on a 3D printed prosthesis implanted with sensors to collect relevant environmental data. This novel system has been applied to a work of relevance, the Stone Sepulcher of Queen Mary of Castile, located in the Royal Monastery of the Holy Trinity of Valencia (Spain). The development of such an intelligent prosthesis aims to improve the conservation of a work of art. The system presented here is completely reversible, leaving any trace on the sculpture where it was inserted after removal. This intelligent prosthesis can monitor the environmental conditions and send them to a remote server in the cloud. The results have demonstrated the viability and suitability of the procedure and present an innovative solution applicable to other pieces of Cultural Heritage.Niquet, N.; Sánchez López, M.; Mas-Barberà, X. (2020). Development of reversible intelligent prosthesis for the conservation of sculptures. A case study. Journal of Cultural Heritage. 43:227-234. https://doi.org/10.1016/j.culher.2019.12.0102272344

    From concept to validation of a wireless environmental sensor for the integral application of preventive conservation methodologies in low-budget museums

    Full text link
    [EN] The effective implementation of preventive conservation strategies requires tools to continuously measure the environmental conditions to which the cultural objects are exposed. In this sense, the European Horizon 2020 project CollectionCare aims to provide an affordable preventive conservation service for individual objects focused to small museums with limited budgets. Although the use of data loggers has been a must in the past, new deployments tend to use wired and wireless sensors that provide real-time information and the ability to instantly analyse the data, allowing immediate action to be taken in the event of a threat towards a cultural object. For already constructed buildings, wireless systems have the advantage that, a priori, deployments are simpler, faster and cheaper, but have to deal with complex heritage environments with long distances to be covered and very thick walls to cross. In many cases, commercial systems of this type are not economically viable for small museums with limited budgets. Moreover, conservators who try to approach such solutions are often overwhelmed by unclear technical specifications that do not allow them to determine whether the solution fits their environment or not, giving rise to great frustration. Among others, the CollectionCare includes the design of a specific low-cost wireless sensor, being the aim of this article to present to both technical and non-technical readers, the design choices made regarding the housing, attachment method, power source, wireless transmission technique and selection of the environmental sensors following European standards. Also, the effective implementation of the device in three stages to prove the concep until to get a near-production version is presented. The developed device has been deployed in museums in Belgium, Italy, Greece, Latvia, Denmark and Spain, and the validation results are presented, showing that it is feasible to have a cost-effective proposal that it is easy to install and configure and can operate for 10 years without the need for maintenance or battery replacement except if it is needed to comply with annual recalibration if standards such as ISO 11799:2015 are required.This research was funded by the European Union's Horizon 2020 research and innovation programme under Grant agreement No.814624.Laborda, J.; García-Castillo, AM.; Mercado Romero, R.; Peiró-Vitoria, A.; Perles, A. (2022). From concept to validation of a wireless environmental sensor for the integral application of preventive conservation methodologies in low-budget museums. Heritage Science. 10(1):1-17. https://doi.org/10.1186/s40494-022-00837-911710

    Data Acquisition System for Chemical Iodine Generation Suitable for Flowing Medium Chemical Oxygen Iodine Laser

    Get PDF
    Development of infrared flowing medium lasers needs to be envisaged in a manner that practical aspects such as system compactness, short readiness time, low system size, weight and power are met to make them field deployable. In this context, the critical aspect of in-situ production of lasing species (Iodine) in Chemical Oxygen Iodine Lasers (COIL), one of the most potent flowing medium lasers, has been investigated. The paper dwells on chemical generation of iodine and its precise flow and parameter control by implementing a customised Data Acquisition System (DAS). Iodine is generated in a chemical reaction of Cuprous Iodide (CuI) with chlorine. This is achieved by precisely controlled flow of chlorine diluted with a carrier gas (N2 ) in a ratio of 1:2. DAS includes regulated gas feed, accurate thermal stabilisation, relevant diagnostics and implementation of necessary safety interlocks in a real time operation scenario for establishing the system efficacy and scalability. The studies have demonstrated chemically generated iodine flow rate of ~ 1.2 mmol.s-1 for Cl2 flow rate of ~3 mmol.s-1 all measured in real time using the developed DAS with a conversion efficiency of 80%. Developed I2 supply system has potential to deliver iodine on demand with required flow rates, measurement uncertainty of ~ 4.5 percent and advantages of smaller specific weight and size with reduced system readiness time and electrical power supply using DAS system with adequate safety interlocks

    Managing emergency situations in the smart city: The smart signal

    Get PDF
    In a city there are numerous items, many of them unnoticed but essential; this is the case of the signals. Signals are considered objects with reduced technological interest, but in this paper we prove that making them smart and integrating in the IoT (Internet of Things) could be a relevant contribution to the Smart City. This paper presents the concept of Smart Signal, as a device conscious of its context, with communication skills, able to offer the best message to the user, and as a ubiquitous element that contributes with information to the city. We present the design considerations and a real implementation and validation of the system in one of the most challenging environments that may exist in a city: a tunnel. The main advantages of the Smart Signal are the improvement of the actual functionality of the signal providing new interaction capabilities with users and a new sensory mechanism of the Smart City
    corecore