715 research outputs found

    Single-Stage Led Drivers Based On Integrated Bcm Boost And Llc Converters For Street Lighting

    Get PDF
    Electrical lighting has been an important technology to modern society. Given the increasing concerns about environmental and energy saving issues, light-emitting-diode (LED) has become the research focus due to the features of mercury elimination and high energy efficiency compared to conventional lamps. Performance aspects of LED lighting are related with LED driver, thus an appropriate converter should be designed to power up the LEDs with good input power factor and high efficiency. To achieve these elements, single-stage alternating current to direct current (AC-DC) converter with power factor correction (PFC) is proposed as LED driver for application in street lighting. In this topology, a pair of boost circuits which share a single inductor are combined as a PFC stage and then integrated with half-bridge LLC resonant converter. Three kinds of rectifier circuits are proposed for the secondary-side rectification; full-wave bridge rectifier, full-wave voltage doubler rectifier and dual half-wave rectifiers. All rectifier circuits have their own advantages and remove the requirement of center-tapped transformer in circuit design. The power switches are driven by a high-voltage resonant controller IC L6598 with nearly 0.5 duty cycle and a small dead time. All proposed LED drivers have been tested in the laboratory for supplying 12 high-power LEDs from ac input voltage of 240-V. From the comparison results, LED driver using full-wave voltage doubler rectifier has shown the best performances, followed by LED driver using full-wave bridge rectifier and then LED driver using dual half-wave rectifiers. The highest power factor measured is almost unity at 0.99, the lowest total harmonic distortion (THD) is 13.8%, the highest efficiency is 93.39% and the lowest bus voltage is 330-V. The power factor correction was successfully achieved and high conversion efficiency was obtained due to soft-switching characteristics of the LED driver. The voltage stress on bus capacitor is considerably reduced to 1.36 times of the input-peak-voltage. The dimming capability was also accomplished. Lastly, the minimization of storage capacitance was successful with an acceptable range of output current ripple for flicker-less LED lighting

    Using an LED as a sensor and visible light communication device in a smart illumination system

    Get PDF
    The need for more efficient illumination systems has led to the proliferation of Solid-State Lighting (SSL) systems, which offer optimized power consumption. SSL systems are comprised of LED devices which are intrinsically fast devices and permit very fast light modulation. This, along with the congestion of the radio frequency spectrum has paved the path for the emergence of Visible Light Communication (VLC) systems. VLC uses free space to convey information by using light modulation. Notwithstanding, as VLC systems proliferate and cost competitiveness ensues, there are two important aspects to be considered. State-of-the-art VLC implementations use power demanding PAs, and thus it is important to investigate if regular, existent Switched-Mode Power Supply (SMPS) circuits can be adapted for VLC use. A 28 W buck regulator was implemented using a off-the-shelf LED Driver integrated circuit, using both series and parallel dimming techniques. Results show that optical clock frequencies up to 500 kHz are achievable without any major modification besides adequate component sizing. The use of an LED as a sensor was investigated, in a short-range, low-data-rate perspective. Results show successful communication in an LED-to-LED configuration, with enhanced range when using LED strings as sensors. Besides, LEDs present spectral selective sensitivity, which makes them good contenders for a multi-colour LED-to-LED system, such as in the use of RGB displays and lamps. Ultimately, the present work shows evidence that LEDs can be used as a dual-purpose device, enabling not only illumination, but also bi-directional data communication

    Self-Configurable Current-Mirror Technique for Parallel RGB Light-Emitting Diodes (LEDs) Strings

    Get PDF
    Traditional current-mirror circuits require buck converter to deal with one fixed current load. This paper deals with improved self-adjustable current-mirror methods that can address different LED loads under different conditions with the help of one buck converter. The operating principle revolves around a dynamic and self-configurable combinational circuit of transistor and op-amp based current balancing circuit, along with their op-amp based dimming circuits. The proposed circuit guarantees uniformity in the outputs of the circuit. This scheme of current-balancing circuits omitted the need for separate power supply to control the load currents through different kinds of LEDs, i.e. RGB LEDs. The proposed methods are identical and modular, which can be scaled to any number of parallel current sources. The principle methodology has been successfully tested in Simulink environment to verify the current balancing of parallel LED strings

    Scalability of Quasi-hysteretic FSM-based Digitally Controlled Single-inductor Dual-string Buck LED Driver To Multiple Strings

    Get PDF
    There has been growing interest in Single-Inductor Multiple-Output (SIMO) DC-DC converters due to its reduced cost and smaller form factor in comparison with using multiple single-output converters. An application for such a SIMO-based switching converter is to drive multiple LED strings in a multi-channel LED display. This paper proposes a quasi-hysteretic FSM-based digitally controlled Single-Inductor Dual-Output (SIDO) buck switching LED Driver operating in Discontinuous Conduction Mode (DCM) and extends it to drive multiple outputs. Based on the time-multiplexing control scheme in DCM, a theoretical upper limit of the total number of outputs in a SIMO buck switching LED driver for various backlight LED current values can be derived analytically. The advantages of the proposed SIMO LED driver include reducing the controller design complexity by eliminating loop compensation, driving more LED strings without limited by the maximum LED current rating, performing digital dimming with no additional switches required, and optimization of local bus voltage to compensate for variability of LED forward voltage (VF) in each individual LED string with smaller power loss. Loosely-binned LEDs with larger VF variation can therefore be used for reduced LED costs.postprin

    A review and classification of LED ballasts

    Get PDF
    This paper presents a review on existing ballasts for light-emitting diodes (LED) with considerations to their compliance to regulations, technological challenges, and on meeting various application requirements. All existing LED ballasts, including those proposed in recent literature, have been appropriately classified and systematically organized for the discussion. The dissemination of this information and its understanding is helpful for future R&D pursuits in this area. © 2013 IEEE.published_or_final_versio

    Elimination of an Electrolytic Capacitor in AC/DC Light-Emitting Diode (LED) Driver With High Input Power Factor and Constant Output Current

    Get PDF
    published_or_final_versio

    Power Efficient VLC Transmitter Based on Pulse-Width Modulated DC-DC Converters and the Split of the Power

    Get PDF
    Visible Light Communication (VLC) has gained relevance during the last years. It consists in using High-Brightness LEDs (HB-LEDs) both for lighting and for transmitting information changing the light intensity rapidly. However, there are some bottlenecks that are slowing down the deployment of this technology. One of the most important problems is that the HB-LED drivers proposed for addressing high data rates in VLC achieve poor power efficiency. Since these HB-LED drivers must be able to reproduce fast current waveforms, the use of Linear Power Amplifiers (LPAs) has been adopted, which clearly damages the power efficiency of HB-LED lighting. In order to alleviate this problem, a HB-LED driver made up of two DC-DC power converters is presented in this work. One of them is responsible for performing the communication functionality by operating at high switching frequency (10 MHz), whereas the second converter fulfills the illumination functionality by ensuring a certain biasing point. The split of the power allows us to minimize the power delivered by the fast-response DC-DC power converter, which suffers from high switching losses. Thus, the overall efficiency can be maximized for each particular communication scenario and for scenarios with changing condition

    The Effects of Spread-Spectrum Techniques in Mitigating Conducted EMI to LED Luminance

    Get PDF
    Rapid voltage and current changes in recently ubiquitous LED driver have a potency to interfere other devices. Solutions with special converter design, component design, EMI filter, and spread-spectrum techniques have been proposed. Due to cost-size-weight constraints, spread-spectrum technique seems a potential candidate in alleviating EMI problem in LED application. In this paper, the effectiveness of conducted EMI suppression performance of the spread-spectrum technique is evaluated. Spread-spectrum techniques applied by giving disturbance to the system LED driver with 3 profile signals, filtered square, triangular, and sine disturbance signal to the switching pattern of a buck LED driver. From the test results, 472.5 kHz triangular and 525 kHz sine signal can reduce EMI about 42 dBuV whilethe filtered square signal can reduce EMI 40.70 dBuV compare with fundamental constantfrequency reference 669 kHz. The average reduction in the power level of the third signal inthe frequency range of 199 kHz to 925 kHz for 5.154281 dBuV and the filtered square signal can reduce the average power level better than other signal disturbance of 5.852618 dBuV.LED luminance decrease when the spread-spectrum technique is applied to the system about 2814 lux

    A 3U Cubesat Platform for Plant Growth Experiments

    Get PDF
    This thesis work presents the design, manufacturing, and ground testing of a 3U Cubesat platform intended for plant growth experiments. The structure is comprised of four identical, but independent plant growth chambers. Each of these accommodates about two cubic inches of soil, and the necessary air volume and moisture regulation to grow a fast-growing plant from seed to seed in 3-4 weeks. The plant growth is artificially stimulated by an array of light emitting diodes (LEDs) at grow light wavelengths that match the properties of chlorophyll, and is monitored by a suite of sensors: temperature, pressure, relative humidity, CO2, custom designed soil pH, soil moisture, and imaging. The latter takes periodic still pictures in the visible and infrared spectrum using LED based illumination at different wavelengths. These images are used to analyze the overall health of the plant and record the developmental stages of the plant growth. The platform is complemented with a raspberry Pi on board computer and a solar panel-based power generation system. The current scientific goal of this 3U Cubesat platform is to study the interactions of soil microbes (bacteria and fungus) and plants. The former can be a source of nutrients for plants and decrease induced stress on these in space conditions. The availability of four test chambers allow scientists to quantify changes and investigate emergent properties of the soil bacterial and fungal populations. The Cubesat design affords the opportunity to investigate the impact of physical factors such as pressure, temperature, microgravity, and space radiation on the soil bacteria and fungi, in addition to the overall plant health. While small scale biology experiments have been performed on Cubesats before, to our knowledge none of those involved plant growth stimulation and monitoring. This platform can be adapted and expanded to meet the requirements of similar scientific research

    An efficient self-configurable driver for color light emitting diode

    Get PDF
    To arrange an accurate load current for the different sets of color LEDs, an efficient LED driver must facilitate the current sharing among the LED strings using a constant current source. Effective utilization of power in an LED string is vital for display panels as it defines the magnitude of the undesirable phenomenon of flickering switching. An efficient and dimmable LED driver suitable for LED back-light drivers in the LED display panel is presented in this thesis. This thesis proposed a color LEDs driver with a self-configuration of the enhanced current mirror in multiple LED strings. In this proposed work, the load currents have been efficiently balanced among the identical and unequal loads of color LEDs. In a traditional current mirror, the buck converter is linked with a fixed current load. Nonetheless, in the proposed improved self-adjustable current mirror, the variation of LEDs load string could be addressed using a single buck converter. The improvement is based on the combinational circuits of transistor and op-amp with proper scheme biasing. The improved dimming circuit is then proposed for exploiting the range of dimming at the string and module level. Furthermore, the proposed current-balancing circuits excluded a separate power supply to control current in different load strings of LEDs (red/green/blue). Since the approach circuit is identical and modular, it could be scaled to any number of parallel current sources. The different bi-level pulsating driving have been performed to reduce the loss while running the LEDs at the high peak current. It is to create two driving parameters, which are the low/high current levels (pulse width modulation) and associated duty cycles, in having the capability to control luminosity effectively. It can be seen, the previous techniques had improved the luminous efficacy of LEDs by using n-level driving techniques but at the trade-off of losing efficiency with the introduction of resistors (variables in series) to create a bi-level phenomenon for the driver. Therefore, this thesis proposes to replace the resistors with the new approach dimming circuit to get a significant improvement in the overall system’s efficiency that can assist to dim an individual LEDs string based on designated color (red or green or blue) LEDs. Meanwhile, in improving illuminance through dimming, the hybridization of pulse width modulated (PWM) and amplitude modulated (AM) has been proposed. As a result, the proposed LEDs driver has shown effective current balancing through the color LEDs string with exploiting a large dimming range. The illumination analysis has also shown a significantly higher when compared with PWM (bi-level pulsating). The computation efficiency for red, green, and blue LEDs strings around range 92% to 99%
    corecore