207 research outputs found

    Design of a 3 DOFs parallel actuated mechanism for a biped hip joint

    Get PDF
    Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, DC, May 200

    Design and Development of the Biped Prototype ROBIAN

    Get PDF
    Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, DC, May 200

    The Penn Jerboa: A Platform for Exploring Parallel Composition of Templates

    Get PDF
    We have built a 12DOF, passive-compliant legged, tailed biped actuated by four brushless DC motors. We anticipate that this machine will achieve varied modes of quasistatic and dynamic balance, enabling a broad range of locomotion tasks including sitting, standing, walking, hopping, running, turning, leaping, and more. Achieving this diversity of behavior with a single under-actuated body, requires a correspondingly diverse array of controllers, motivating our interest in compositional techniques that promote mixing and reuse of a relatively few base constituents to achieve a combinatorially growing array of available choices. Here we report on the development of one important example of such a behavioral programming method, the construction of a novel monopedal sagittal plane hopping gait through parallel composition of four decoupled 1DOF base controllers. For this example behavior, the legs are locked in phase and the body is fastened to a boom to restrict motion to the sagittal plane. The platform's locomotion is powered by the hip motor that adjusts leg touchdown angle in flight and balance in stance, along with a tail motor that adjusts body shape in flight and drives energy into the passive leg shank spring during stance. The motor control signals arise from the application in parallel of four simple, completely decoupled 1DOF feedback laws that provably stabilize in isolation four corresponding 1DOF abstract reference plants. Each of these abstract 1DOF closed loop dynamics represents some simple but crucial specific component of the locomotion task at hand. We present a partial proof of correctness for this parallel composition of template reference systems along with data from the physical platform suggesting these templates are anchored as evidenced by the correspondence of their characteristic motions with a suitably transformed image of traces from the physical platform.Comment: Technical Report to Accompany: A. De and D. Koditschek, "Parallel composition of templates for tail-energized planar hopping," in 2015 IEEE International Conference on Robotics and Automation (ICRA), May 2015. v2: Used plain latex article, correct gap radius and specific force/torque number

    A reconfigurable multi-mode mobile parallel robot

    Get PDF

    A Variable Stiffness Actuator Module With Favorable Mass Distribution for a Bio-inspired Biped Robot

    Get PDF
    Achieving human-like locomotion with humanoid platforms often requires the use of variable stiffness actuators (VSAs) in multi-degree-of-freedom robotic joints. VSAs possess 2 motors for the control of both stiffness and equilibrium position. Hence, they add mass and mechanical complexity to the design of humanoids. Mass distribution of the legs is an important design parameter, because it can have detrimental effects on the cost of transport. This work presents a novel VSA module, designed to be implemented in a bio-inspired humanoid robot, Binocchio, that houses all components on the same side of the actuated joint. This feature allowed to place the actuator's mass to more proximal locations with respect to the actuated joint instead of concentrating it at the joint level, creating a more favorable mass distribution in the humanoid. Besides, it also facilitated it's usage in joints with centralized multi-degree of freedom (DoF) joints instead of cascading single DoF modules. The design of the VSA module is presented, including it's integration in the multi-DoFs joints of Binocchio. Experiments validated the static characteristics of the VSA module to accurately estimate the output torque and stiffness. The dynamic responses of the driving and stiffening mechanisms are shown. Finally, experiments show the ability of the actuation system to replicate the envisioned human-like kinematic, torque and stiffness profiles for Binocchio

    Parallel architectures for humanoid robots

    Get PDF
    ยฉ 2020 by the authors. Licensee MDPI, Basel, Switzerland. The structure of humanoid robots can be inspired to human anatomy and operation with open challenges in mechanical performance that can be achieved by using parallel kinematic mechanisms. Parallel mechanisms can be identified in human anatomy with operations that can be used for designing parallel mechanisms in the structure of humanoid robots. Design issues are outlined as requirements and performance for parallel mechanisms in humanoid structures. The example of LARMbot humanoid design is presented as from direct authorsโ€™ experience to show an example of the feasibility and efficiency of using parallel mechanisms in humanoid structures. This work is an extension of a paper presented at ISRM 2019 conference (International Symposium on Robotics and Mechatronics)

    ์‚ฌ๋žŒ์˜ ์ž์—ฐ์Šค๋Ÿฌ์šด ๋ณดํ–‰ ๋™์ž‘ ์ƒ์„ฑ์„ ์œ„ํ•œ ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฐ˜ ํœด๋จธ๋…ธ์ด๋“œ ์ œ์–ด ๋ฐฉ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2014. 8. ์ด์ œํฌ.ํœด๋จธ๋…ธ์ด๋“œ๋ฅผ ์ œ์–ดํ•˜์—ฌ ์‚ฌ๋žŒ์˜ ์ž์—ฐ์Šค๋Ÿฌ์šด ์ด๋™ ๋™์ž‘์„ ๋งŒ๋“ค์–ด๋‚ด๋Š” ๊ฒƒ์€ ์ปดํ“จํ„ฐ๊ทธ๋ž˜ํ”ฝ์Šค ๋ฐ ๋กœ๋ด‡๊ณตํ•™ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๋ฌธ์ œ๋กœ ์ƒ๊ฐ๋˜์–ด ์™”๋‹ค. ํ•˜์ง€๋งŒ, ์ด๋Š” ์‚ฌ๋žŒ์˜ ์ด๋™์—์„œ ๊ตฌ๋™๊ธฐ๊ฐ€ ๋ถ€์กฑํ•œ (underactuated) ํŠน์„ฑ๊ณผ ์‚ฌ๋žŒ์˜ ๋ชธ์˜ ๋ณต์žกํ•œ ๊ตฌ์กฐ๋ฅผ ๋ชจ๋ฐฉํ•˜๊ณ  ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•ด์•ผ ํ•œ๋‹ค๋Š” ์  ๋•Œ๋ฌธ์— ๋งค์šฐ ์–ด๋ ค์šด ๋ฌธ์ œ๋กœ ์•Œ๋ ค์ ธ์™”๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์€ ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฐ˜ ํœด๋จธ๋…ธ์ด๋“œ๊ฐ€ ์™ธ๋ถ€์˜ ๋ณ€ํ™”์— ์•ˆ์ •์ ์œผ๋กœ ๋Œ€์‘ํ•˜๊ณ  ์‹ค์ œ ์‚ฌ๋žŒ์ฒ˜๋Ÿผ ์ž์—ฐ์Šค๋Ÿฝ๊ณ  ๋‹ค์–‘ํ•œ ์ด๋™ ๋™์ž‘์„ ๋งŒ๋“ค์–ด๋‚ด๋„๋ก ํ•˜๋Š” ์ œ์–ด ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ์‹ค์ œ ์‚ฌ๋žŒ์œผ๋กœ๋ถ€ํ„ฐ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ๊ด€์ฐฐ ๊ฐ€๋Šฅํ•˜๊ณ  ์ธก์ • ๊ฐ€๋Šฅํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์ตœ๋Œ€ํ•œ์œผ๋กœ ํ™œ์šฉํ•˜์—ฌ ๋ฌธ์ œ์˜ ์–ด๋ ค์›€์„ ๊ทน๋ณตํ–ˆ๋‹ค. ์šฐ๋ฆฌ์˜ ์ ‘๊ทผ ๋ฐฉ๋ฒ•์€ ๋ชจ์…˜ ์บก์ฒ˜ ์‹œ์Šคํ…œ์œผ๋กœ๋ถ€ํ„ฐ ํš๋“ํ•œ ์‚ฌ๋žŒ์˜ ๋ชจ์…˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜๋ฉฐ, ์‹ค์ œ ์‚ฌ๋žŒ์˜ ์ธก์ • ๊ฐ€๋Šฅํ•œ ๋ฌผ๋ฆฌ์ , ์ƒ๋ฆฌํ•™์  ํŠน์„ฑ์„ ๋ณต์›ํ•˜์—ฌ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์šฐ๋ฆฌ๋Š” ํ† ํฌ๋กœ ๊ตฌ๋™๋˜๋Š” ์ด์กฑ ๋ณดํ–‰ ๋ชจ๋ธ์ด ๋‹ค์–‘ํ•œ ์Šคํƒ€์ผ๋กœ ๊ฑธ์„ ์ˆ˜ ์žˆ๋„๋ก ์ œ์–ดํ•˜๋Š” ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ๋ฆฌ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋ชจ์…˜ ์บก์ฒ˜ ๋ฐ์ดํ„ฐ์— ๋‚ด์žฌ๋œ ์ด๋™ ๋™์ž‘ ์ž์ฒด์˜ ๊ฐ•๊ฑด์„ฑ์„ ํ™œ์šฉํ•˜์—ฌ ์‹ค์ œ ์‚ฌ๋žŒ๊ณผ ๊ฐ™์€ ์‚ฌ์‹ค์ ์ธ ์ด๋™ ์ œ์–ด๋ฅผ ๊ตฌํ˜„ํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ๋Š”, ์ฐธ์กฐ ๋ชจ์…˜ ๋ฐ์ดํ„ฐ๋ฅผ ์žฌํ˜„ํ•˜๋Š” ์ž์—ฐ์Šค๋Ÿฌ์šด ๋ณดํ–‰ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์œ„ํ•œ ๊ด€์ ˆ ํ† ํฌ๋ฅผ ๊ณ„์‚ฐํ•˜๊ฒŒ ๋œ๋‹ค. ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ ๊ฐ€์žฅ ํ•ต์‹ฌ์ ์ธ ์•„์ด๋””์–ด๋Š” ๊ฐ„๋‹จํ•œ ์ถ”์ข… ์ œ์–ด๊ธฐ๋งŒ์œผ๋กœ๋„ ์ฐธ์กฐ ๋ชจ์…˜์„ ์žฌํ˜„ํ•  ์ˆ˜ ์žˆ๋„๋ก ์ฐธ์กฐ ๋ชจ์…˜์„ ์—ฐ์†์ ์œผ๋กœ ์กฐ์ ˆํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์šฐ๋ฆฌ์˜ ๋ฐฉ๋ฒ•์€ ๋ชจ์…˜ ๋ธ”๋ Œ๋”ฉ, ๋ชจ์…˜ ์™€ํ•‘, ๋ชจ์…˜ ๊ทธ๋ž˜ํ”„์™€ ๊ฐ™์€ ๊ธฐ์กด์— ์กด์žฌํ•˜๋Š” ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•๋“ค์„ ์ด์กฑ ๋ณดํ–‰ ์ œ์–ด์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ๋ณด๋‹ค ์‚ฌ์‹ค์ ์ธ ์ด๋™ ๋™์ž‘์„ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ๋žŒ์˜ ๋ชธ์„ ์„ธ๋ถ€์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•œ, ๊ทผ์œก์— ์˜ํ•ด ๊ด€์ ˆ์ด ๊ตฌ๋™๋˜๋Š” ์ธ์ฒด ๋ชจ๋ธ์„ ์ œ์–ดํ•˜๋Š” ์ด๋™ ์ œ์–ด ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•œ๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜์— ์‚ฌ์šฉ๋˜๋Š” ํœด๋จธ๋…ธ์ด๋“œ๋Š” ์‹ค์ œ ์‚ฌ๋žŒ์˜ ๋ชธ์—์„œ ์ธก์ •๋œ ์ˆ˜์น˜๋“ค์— ๊ธฐ๋ฐ˜ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ ์ตœ๋Œ€ 120๊ฐœ์˜ ๊ทผ์œก์„ ๊ฐ€์ง„๋‹ค. ์šฐ๋ฆฌ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ตœ์ ์˜ ๊ทผ์œก ํ™œ์„ฑํ™” ์ •๋„๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜๋ฉฐ, ์ฐธ์กฐ ๋ชจ์…˜์„ ์ถฉ์‹คํžˆ ์žฌํ˜„ํ•˜๊ฑฐ๋‚˜ ํ˜น์€ ์ƒˆ๋กœ์šด ์ƒํ™ฉ์— ๋งž๊ฒŒ ๋ชจ์…˜์„ ์ ์‘์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์ฃผ์–ด์ง„ ์ฐธ์กฐ ๋ชจ์…˜์„ ์ˆ˜์ •ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ๋™์ž‘ํ•œ๋‹ค. ์šฐ๋ฆฌ์˜ ํ™•์žฅ๊ฐ€๋Šฅํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ๊ทผ๊ณจ๊ฒฉ ์ธ์ฒด ๋ชจ๋ธ์„ ์ตœ์ ์˜ ๊ทผ์œก ์กฐํ•ฉ์„ ์‚ฌ์šฉํ•˜๋ฉฐ ๊ท ํ˜•์„ ์œ ์ง€ํ•˜๋„๋ก ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ๋‹ค์–‘ํ•œ ์Šคํƒ€์ผ๋กœ ๊ฑท๊ธฐ ๋ฐ ๋‹ฌ๋ฆฌ๊ธฐ, ๋ชจ๋ธ์˜ ๋ณ€ํ™” (๊ทผ์œก์˜ ์•ฝํ™”, ๊ฒฝ์ง, ๊ด€์ ˆ์˜ ํƒˆ๊ตฌ), ํ™˜๊ฒฝ์˜ ๋ณ€ํ™” (์™ธ๋ ฅ), ๋ชฉ์ ์˜ ๋ณ€ํ™” (ํ†ต์ฆ์˜ ๊ฐ์†Œ, ํšจ์œจ์„ฑ์˜ ์ตœ๋Œ€ํ™”)์— ๋Œ€ํ•œ ๋Œ€์‘, ๋ฐฉํ–ฅ ์ „ํ™˜, ํšŒ์ „, ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒํ•˜๊ฒŒ ๋ฐฉํ–ฅ์„ ๋ฐ”๊พธ๋ฉฐ ๊ฑท๊ธฐ ๋“ฑ๊ณผ ๊ฐ™์€ ๋ณด๋‹ค ๋‚œ์ด๋„ ๋†’์€ ๋™์ž‘๋“ค๋กœ ์ด๋ฃจ์–ด์ง„ ์˜ˆ์ œ๋ฅผ ํ†ตํ•ด ์šฐ๋ฆฌ์˜ ์ ‘๊ทผ ๋ฐฉ๋ฒ•์ด ํšจ์œจ์ ์ž„์„ ๋ณด์˜€๋‹ค.Controlling artificial humanoids to generate realistic human locomotion has been considered as an important problem in computer graphics and robotics. However, it has been known to be very difficult because of the underactuated characteristics of the locomotion dynamics and the complex human body structure to be imitated and simulated. In this thesis, we presents controllers for physically simulated humanoids that exhibit a rich set of human-like and resilient simulated locomotion. Our approach exploits observable and measurable data of a human to effectively overcome difficulties of the problem. More specifically, our approach utilizes observed human motion data collected by motion capture systems and reconstructs measured physical and physiological properties of a human body. We propose a data-driven algorithm to control torque-actuated biped models to walk in a wide range of locomotion skills. Our algorithm uses human motion capture data and realizes an human-like locomotion control facilitated by inherent robustness of the locomotion motion. Concretely, it takes reference motion and generates a set of joint torques to generate human-like walking simulation. The idea is continuously modulating the reference motion such that even a simple tracking controller can reproduce the reference motion. A number of existing data-driven techniques such as motion blending, motion warping, and motion graph can facilitate the biped control with this framework. We present a locomotion control system that controls detailed models of a human body with the musculotendon actuating process to create more human-like simulated locomotion. The simulated humanoids are based on measured properties of a human body and contain maximum 120 muscles. Our algorithm computes the optimal coordination of muscle activations and actively modulates the reference motion to fathifully reproduce the reference motion or adapt the motion to meet new conditions. Our scalable algorithm can control various types of musculoskeletal humanoids while seeking harmonious coordination of many muscles and maintaining balance. We demonstrate the strength of our approach with examples that allow simulated humanoids to walk and run in various styles, adapt to change of models (e.g., muscle weakness, tightness, joint dislocation), environments (e.g., external pushes), goals (e.g., pain reduction and efficiency maximization), and perform more challenging locomotion tasks such as turn, spin, and walking while steering its direction interactively.Contents Abstract i Contents iii List of Figures v 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Computer Graphics Perspective . . . . . . . . . . . . . . . . . 3 1.1.2 Robotics Perspective . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.3 Biomechanics Perspective . . . . . . . . . . . . . . . . . . . . 7 1.2 Aim of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Previous Work 16 2.1 Biped Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.1 Controllers with Optimization . . . . . . . . . . . . . . . . . . 18 2.1.2 Controllers with Motion Capture Data . . . . . . . . . . . . . 20 2.2 Simulation of Musculoskeletal Humanoids . . . . . . . . . . . . . . . 21 2.2.1 Simulation of Specic Body Parts . . . . . . . . . . . . . . . . 21 2.2.2 Simulation of Full-Body Models . . . . . . . . . . . . . . . . . 22 2.2.3 Controllers for Musculoskeletal Humanoids . . . . . . . . . . . 23 3 Data-Driven Biped Control 24 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Data-Driven Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.1 Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.2 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4 Locomotion Control for Many-Muscle Humanoids 56 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 Humanoid Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.1 Muscle Force Generation . . . . . . . . . . . . . . . . . . . . . 61 4.2.2 Muscle Force Transfer . . . . . . . . . . . . . . . . . . . . . . 64 4.2.3 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3 Muscle Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.3.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3.3 Quadratic Programming Formulation . . . . . . . . . . . . . . 70 4.4 Trajectory Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5 Conclusion 84 A Mathematical Definitions 88 A.1 Definitions of Transition Function . . . . . . . . . . . . . . . . . . . . 88 B Humanoid Models 89 B.1 Torque-Actuated Biped Models . . . . . . . . . . . . . . . . . . . . . 89 B.2 Many-Muscle Humanoid Models . . . . . . . . . . . . . . . . . . . . . 91 C Dynamics of Musculotendon Actuators 94 C.1 Contraction Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 94 C.2 Initial Muscle States . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Glossary for Medical Terms 99 Bibliography 102 ์ดˆ๋ก 113Docto
    • โ€ฆ
    corecore