66 research outputs found

    Perfect Reconstruction Two-Channel Filter Banks on Arbitrary Graphs

    Full text link
    This paper extends the existing theory of perfect reconstruction two-channel filter banks from bipartite graphs to non-bipartite graphs. By generalizing the concept of downsampling/upsampling we establish the frame of two-channel filter bank on arbitrary connected, undirected and weighted graphs. Then the equations for perfect reconstruction of the filter banks are presented and solved under proper conditions. Algorithms for designing orthogonal and biorthogonal banks are given and two typical orthogonal two-channel filter banks are calculated. The locality and approximation properties of such filter banks are discussed theoretically and experimentally.Comment: 33 pages,11 figures. This manuscript has been submitted to ScienceDirect Applied and Computational Harmonic Analysis (ACHA) on Jan 27,202

    Wavelet Theory Demystified

    Get PDF
    In this paper, we revisit wavelet theory starting from the representation of a scaling function as the convolution of a B-spline (the regular part of it) and a distribution (the irregular or residual part). This formulation leads to some new insights on wavelets and makes it possible to rederive the main results of the classical theory—including some new extensions for fractional orders—in a self-contained, accessible fashion. In particular, we prove that the B-spline component is entirely responsible for five key wavelet properties: order of approximation, reproduction of polynomials, vanishing moments, multiscale differentiation property, and smoothness (regularity) of the basis functions. We also investigate the interaction of wavelets with differential operators giving explicit time domain formulas for the fractional derivatives of the basis functions. This allows us to specify a corresponding dual wavelet basis and helps us understand why the wavelet transform provides a stable characterization of the derivatives of a signal. Additional results include a new peeling theory of smoothness, leading to the extended notion of wavelet differentiability in the Lp L _{ p } -sense and a sharper theorem stating that smoothness implies order

    Wavelet Theory

    Get PDF
    The wavelet is a powerful mathematical tool that plays an important role in science and technology. This book looks at some of the most creative and popular applications of wavelets including biomedical signal processing, image processing, communication signal processing, Internet of Things (IoT), acoustical signal processing, financial market data analysis, energy and power management, and COVID-19 pandemic measurements and calculations. The editor’s personal interest is the application of wavelet transform to identify time domain changes on signals and corresponding frequency components and in improving power amplifier behavior

    Scalable video compression with optimized visual performance and random accessibility

    Full text link
    This thesis is concerned with maximizing the coding efficiency, random accessibility and visual performance of scalable compressed video. The unifying theme behind this work is the use of finely embedded localized coding structures, which govern the extent to which these goals may be jointly achieved. The first part focuses on scalable volumetric image compression. We investigate 3D transform and coding techniques which exploit inter-slice statistical redundancies without compromising slice accessibility. Our study shows that the motion-compensated temporal discrete wavelet transform (MC-TDWT) practically achieves an upper bound to the compression efficiency of slice transforms. From a video coding perspective, we find that most of the coding gain is attributed to offsetting the learning penalty in adaptive arithmetic coding through 3D code-block extension, rather than inter-frame context modelling. The second aspect of this thesis examines random accessibility. Accessibility refers to the ease with which a region of interest is accessed (subband samples needed for reconstruction are retrieved) from a compressed video bitstream, subject to spatiotemporal code-block constraints. We investigate the fundamental implications of motion compensation for random access efficiency and the compression performance of scalable interactive video. We demonstrate that inclusion of motion compensation operators within the lifting steps of a temporal subband transform incurs a random access penalty which depends on the characteristics of the motion field. The final aspect of this thesis aims to minimize the perceptual impact of visible distortion in scalable reconstructed video. We present a visual optimization strategy based on distortion scaling which raises the distortion-length slope of perceptually significant samples. This alters the codestream embedding order during post-compression rate-distortion optimization, thus allowing visually sensitive sites to be encoded with higher fidelity at a given bit-rate. For visual sensitivity analysis, we propose a contrast perception model that incorporates an adaptive masking slope. This versatile feature provides a context which models perceptual significance. It enables scene structures that otherwise suffer significant degradation to be preserved at lower bit-rates. The novelty in our approach derives from a set of "perceptual mappings" which account for quantization noise shaping effects induced by motion-compensated temporal synthesis. The proposed technique reduces wavelet compression artefacts and improves the perceptual quality of video

    A flexible hardware architecture for 2-D discrete wavelet transform: design and FPGA implementation

    Get PDF
    The Discrete Wavelet Transform (DWT) is a powerful signal processing tool that has recently gained widespread acceptance in the field of digital image processing. The multiresolution analysis provided by the DWT addresses the shortcomings of the Fourier Transform and its derivatives. The DWT has proven useful in the area of image compression where it replaces the Discrete Cosine Transform (DCT) in new JPEG2000 and MPEG4 image and video compression standards. The Cohen-Daubechies-Feauveau (CDF) 5/3 and CDF 9/7 DWTs are used for reversible lossless and irreversible lossy compression encoders in the JPEG2000 standard respectively. The design and implementation of a flexible hardware architecture for the 2-D DWT is presented in this thesis. This architecture can be configured to perform both the forward and inverse DWT for any DWTfamily, using fixed-point arithmetic and no auxiliary memory. The Lifting Scheme method is used to perform the DWT instead of the less efficient convolution-based methods. The DWT core is modeled using MATLAB and highly parameterized VHDL. The VHDL model is synthesized to a Xilinx FPGA to prove hardware functionality. The CDF 5/3 and CDF 9/7 versions of the DWT are both modeled and used as comparisons throughout this thesis. The DWT core is used in conjunction with a very simple image denoising module to demonstrate the potential of the DWT core to perform image processing techniques. The CDF 5/3 hardware produces identical results to its theoretical MATLAB model. The fixed point CDF 9/7 deviates very slightly from its floating-point MATLAB model with a ~59dB PSNR deviation for nine levels of DWT decomposition. The execution time for performing both DWTs is nearly identical at -14 clock cycles per image pixel for one level of DWT decomposition. The hardware area generated for the CDF 5/3 is -16,000 gates using only 5% of the Xilinx FPGA hardware area, 2.185 MHz maximum clock speed and 24 mW power consumption. The simple wavelet image denoising techniques resulted in cleaned images up to -27 PSNR

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin

    Introduction to frames

    Get PDF
    This survey gives an introduction to redundant signal representations called frames. These representations have recently emerged as yet another powerful tool in the signal processing toolbox and have become popular through use in numerous applications. Our aim is to familiarize a general audience with the area, while at the same time giving a snapshot of the current state-of-the-art

    Global and Local Uncertainty Principles for Signals on Graphs

    Get PDF
    Uncertainty principles such as Heisenberg's provide limits on the time-frequency concentration of a signal, and constitute an important theoretical tool for designing and evaluating linear signal transforms. Generalizations of such principles to the graph setting can inform dictionary design for graph signals, lead to algorithms for reconstructing missing information from graph signals via sparse representations, and yield new graph analysis tools. While previous work has focused on generalizing notions of spreads of a graph signal in the vertex and graph spectral domains, our approach is to generalize the methods of Lieb in order to develop uncertainty principles that provide limits on the concentration of the analysis coefficients of any graph signal under a dictionary transform whose atoms are jointly localized in the vertex and graph spectral domains. One challenge we highlight is that due to the inhomogeneity of the underlying graph data domain, the local structure in a single small region of the graph can drastically affect the uncertainty bounds for signals concentrated in different regions of the graph, limiting the information provided by global uncertainty principles. Accordingly, we suggest a new way to incorporate a notion of locality, and develop local uncertainty principles that bound the concentration of the analysis coefficients of each atom of a localized graph spectral filter frame in terms of quantities that depend on the local structure of the graph around the center vertex of the given atom. Finally, we demonstrate how our proposed local uncertainty measures can improve the random sampling of graph signals
    • …
    corecore