2,650 research outputs found

    Design of Specific P Systems Simulators on GPUs

    Get PDF
    In order to validate P system models and to assist on their formal verification, simulators are indispensable. Moreover, having effi-cient simulation tools is crucial, and for this purpose, parallel platforms should be employed. So far, several parallel simulators for P systems have been developed, specifically targeting GPUs (Graphics Processing Units). Although being a hot topic within Membrane Computing, map-ping P system parallelism on GPUs is still not a mature area. In the past, we have successfully accelerated the simulation of two specific fam-ilies of P systems solving SAT with GPUs, and learned in the process some semantics ingredients that fit well on these parallel devices. We are extending this exploration by designing an specific simulator of a P system model for the FACTORIZATION problem. In this paper, we analyse the two main approaches for simulators, and depict some design decisions required for this case study.Ministerio de Industria, Economía y Competitividad TIN2017-89842-

    Performance analysis and optimization of automotive GPUs

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Advanced Driver Assistance Systems (ADAS) and Autonomous Driving (AD) have drastically increased the performance demands of automotive systems. Suitable highperformance platforms building upon Graphic Processing Units (GPUs) have been developed to respond to this demand, being NVIDIA Jetson TX2 a relevant representative. However, whether high-performance GPU configurations are appropriate for automotive setups remains as an open question. This paper aims at providing light on this question by modelling an automotive GPU (Jetson TX2), analyzing its microarchitectural parameters against relevant benchmarks, and identifying specific configurations able to meaningfully increase performance within similar cost envelopes, or to decrease costs preserving original performance levels. Overall, our analysis opens the door to the optimization of automotive GPUs for further system efficiency.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 772773) and the HiPEAC Network of Excellence. Pedro Benedicte and Jaume Abella have been partially supported by the MINECO under FPU15/01394 grant and Ramon y Cajal postdoctoral fellowship number RYC-2013-14717 respectively and Leonidas Kosmidis under Juan de la Cierva-Formacin postdoctoral fellowship (FJCI-2017-34095).Peer ReviewedPostprint (author's final draft

    GeNN: a code generation framework for accelerated brain simulations

    Get PDF
    Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/

    Simulating Spiking Neural P systems without delays using GPUs

    Get PDF
    We present in this paper our work regarding simulating a type of P system known as a spiking neural P system (SNP system) using graphics processing units (GPUs). GPUs, because of their architectural optimization for parallel computations, are well-suited for highly parallelizable problems. Due to the advent of general purpose GPU computing in recent years, GPUs are not limited to graphics and video processing alone, but include computationally intensive scientific and mathematical applications as well. Moreover P systems, including SNP systems, are inherently and maximally parallel computing models whose inspirations are taken from the functioning and dynamics of a living cell. In particular, SNP systems try to give a modest but formal representation of a special type of cell known as the neuron and their interactions with one another. The nature of SNP systems allowed their representation as matrices, which is a crucial step in simulating them on highly parallel devices such as GPUs. The highly parallel nature of SNP systems necessitate the use of hardware intended for parallel computations. The simulation algorithms, design considerations, and implementation are presented. Finally, simulation results, observations, and analyses using an SNP system that generates all numbers in N\mathbb N - {1} are discussed, as well as recommendations for future work.Comment: 19 pages in total, 4 figures, listings/algorithms, submitted at the 9th Brainstorming Week in Membrane Computing, University of Seville, Spai

    NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors

    Get PDF
    © 2016 Cheung, Schultz and Luk.NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation
    corecore