
Design of Specific P Systems Simulators
on GPUs

Miguel Á. Mart́ınez-del-Amor(B), David Orellana-Mart́ın,
Ignacio Pérez-Hurtado, Luis Valencia-Cabrera, Agust́ın Riscos-Núñez,

and Mario J. Pérez-Jiménez

Research Group on Natural Computing,
Universidad de Sevilla, Avda. Reina Mercedes S/N, 41012 Sevilla, Spain
{mdelamor,dorellana,perezh,lvalencia,ariscosn,marper}@us.es

Abstract. In order to validate P system models and to assist on their formal
verification, simulators are indispensable. Moreover, having effi-cient simulation tools is
crucial, and for this purpose, parallel platforms should be employed. So far, several
parallel simulators for P systems have been developed, specifically targeting GPUs
(Graphics Processing Units). Although being a hot topic within Membrane Computing,
map-ping P system parallelism on GPUs is still not a mature area. In the past, we have
successfully accelerated the simulation of two specific fam-ilies of P systems solving SAT
with GPUs, and learned in the process some semantics ingredients that fit well on these
parallel devices. We are extending this exploration by designing an specific simulator of
a P system model for the FACTORIZATION problem. In this paper, we analyse the two
main approaches for simulators, and depict some design decisions required for this case
study.

Keywords: P systems · Parallel simulation · GPU computing

1 Introduction

Parallel simulation of P systems is of increasingly importance. Simulating mem-
brane systems enable model designers to verify and validate their work, so effi-
cient simulation tools can save time in this process. Moreover, identifying how
the bioinspired parallelism of these devices can be handled by current parallel
platforms can help to drive next generation technology.

Previous work in this concern has been to simulate different solutions of the
same problem in order to isolate P system ingredients that fit well into the
parallel architecture of GPUs. In [2], a GPU simulator for a family of P systems
with active membranes and division of elementary membranes solving SAT was
introduced. This was the first specific simulator on the GPU to be defined. In [5],
a family of tissue P systems with cell division solving SAT was introduced. The
former achieved an speedup of 63× compared to a sequential counterpart, while
the latter obtained a 10× of acceleration. Using polarizations in the cell-like

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12797-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-12797-8_14

model helped to reduce the amount of present objects in the membranes, and its
representation has a minor impact to the GPU in terms of memory consumption.

The aforementioned simulators were designed for specific families of P sys-
tems, so tailored code was developed. There were also developments concerning
generic simulators for P system variants, being the first one for P systems with
active membranes and elementary division [1]. In this simulator, any P system
for that model can be simulated (under certain pre-established restrictions),
requiring to invest lot of resources for worst cases that are rare to happen in a
real model. For this reason, a stressing test with toy models lead to speedups of
up to 7×, but with the family solving SAT just 1.5× [4].

A new solution to the FACTORIZATION problem using computing P systems
has been proposed in [6]. Let us recall that the version of FACTORIZATION problem
considered in the cited paper is the following: given a natural number which is the
product of two prime numbers, find its decomposition. A solution to this problem
is provided by a family of (binary) computing polarizationless P systems with
active membranes making use of minimal cooperation and minimal production
(without dissolution rules and without division rules for non-elementary mem-
branes). Minimal cooperation stands for having rules with left-hand side (LHS)
length of at most 2, and minimal production means to have rules with right-hand
side (RHS) lengths of at most 1.

In this paper, we present the first design decisions of a GPU simulator for the
family of computing membrane systems solving the FACTORIZATION problem.
This design is feasible thanks to a key feature: minimal production. In this
way, it is possible to constrain the size of the membrane representation in the
simulator. Furthermore, the amount of present objects can be saved by using
internal counters. Moreover, binary representation of the input natural number
can be natively represented using unsigned integer numbers on the GPU. This
also shades a light on how to design simulators for specific models.

The rest of the paper is structured as follows: Sect. 2 introduces very briefly
the key concepts of GPU computing to understand the taken decisions. Section 3
discuses the two approaches when developing parallel P system simulators.
Section 4 depicts the design of the simulator while discussing the ingredients
that have enabled that. Section 5 ends the paper with conclusions and future
work.

2 Core Concepts of GPU Computing

When programming a GPU with CUDA, firstly, the data structures that are
going to be used have to be allocated on the device. This constrains the flexibil-
ity while increasing the efficiency: reserving new memory on the fly can really
slowdown the performance of the code [3]. Once all the data structures are
created, the necessary data is sent from the CPU. At this point, the GPU
is ready to launch threads that will execute the same code (called kernel) in
parallel. The work assignation has to be carefully done by the programmer
to balance the amount of threads doing actual job, and how to access the

memory (which requires coalesced access to contiguous data to harness best per-
formance). Thread execution is made hierarchically, being arranged in thread
blocks. Threads within thread blocks can be synchronized and can cooperate
through efficient small memory called shared memory.

3 Generic Versus Specific Parallel Simulators

There are two main approaches when developing GPU simulators for P systems:
generic and specific. The former refers to simulators designed to accept a broad
range of models within a variant. The latter corresponds to ad-hoc simulators
for certain families or models. In CUDA, kernels run faster using static data
structure without dynamic memory (i.e. allocated at the beginning of the code).
For this purpose, simulators have to consider the worst cases in order to avoid
memory conflicts during the simulation.

Generic simulators require to allocate GPU memory for both rule informa-
tion, auxiliary data and system configurations (see Fig. 1, top-left), with enough
space for all possible objects that can be generated (in the worst case, the whole
alphabet). The simulation algorithm conceives two main steps: selection (Fig. 1,
top-right) and execution of rules (Fig. 1, bottom-left). In order to perform selec-
tion of rules, threads need to access to rule information (to consult the LHS)
and the current configuration (to seek existing objects and membrane charges),
and write the result in the auxiliary data structure (executions of each rule).
For execution, threads have to read the auxiliary data (rule selections) and the
rule information (for the RHS) and write the new configuration. Finally, the
result of the simulation is copied back to the host space for its output (Fig. 1,
bottom-right).

On the contrary, specific simulators only need to allocate GPU memory for
objects that are known to appear at the same time. This is normally related
to the input multiset for some systems. Moreover, rule information is directly
encoded in the source code. There is no need to implement a two-step algorithm
given that it is known which rules are going to be executed at every step.

4 Design of a Parallel Simulator

The first step to develop a specific simulator is to design an efficient data structure:
it has to be limited by containing just the required information, and has to dispose
the data contiguously to enable coalesced accesses by threads. As discussed in [3,
4], one performance attribute of P system GPU simulators is object density: if
we cannot estimate an upper bound for the number of different objects that can
appear in a membrane, then we have to allocate space for all objects defined in
the alphabet. In such a case, an array of integers stating the multiplicity of each
object defined in the alphabet is required, called unbounded representation (see
Fig. 2, top). However, if few different objects appear inside the membranes, the
GPU will handle a sparse array given that the majority of multiplicities are 0. This
has a negative impact in the performance, because if we use a thread to process
each object, most of the threads will be idle in any case.

Read P system informa on:
+ P system model descrip on

+ Ini al configura on

Allocate memory in GPU

Copy P system informa on to GPU

Copy P system ini al config to GPU

Read P system informa on:
+ P system model descrip on

+ Ini al configura on

Allocate memory in GPU

Copy P system informa on to GPU

Call to Selec on Kernel(s)

Copy P system ini al config to GPU

Read P system informa on:
+ P system model descrip on

+ Ini al configura on

Allocate memory in GPU

Copy P system informa on to GPU

Copy P system ini al config to GPU

Read P system informa on:
+ P system model descrip on

+ Ini al configura on

Allocate memory in GPU

Copy P system informa on to GPU

Call to Execu on Kernel(s)

Copy P system ini al config to GPU

Call to Selec on Kernel(s)Call to Selec on Kernel(s)

Read P system informa on:
+ P system model descrip on

+ Ini al configura on

Allocate memory in GPU

Copy P system informa on to GPU

Copy P system ini al config to GPU

Read P system informa on:
+ P system model descrip on

+ Ini al configura on

Allocate memory in GPU

Copy P system informa on to GPU

Call to Execu on Kernel(s)

Copy P system ini al config to GPU

Call to Selec on Kernel(s)Call to Selec on Kernel(s)

Copy P system configura on(s) back
to CPU memory

Call to Execu on Kernel(s)

Report outcome of simula on

CPU (serial code) GPU (serial code)

Read P system informa on:
+ P system model descrip on

+ Ini al configura on

Allocate memory in GPU

GPU memory

P system info (rules, alphabet)

P system configura on
(incl. all possible membranes to

be generated during
computa on)

Copy P system informa on to GPU

Copy P system ini al config to GPU

Auxiliary
(rule

selec on)

CPU (serial code) GPU (serial code)

GPU grid

GPU memory

P system info

P system configura on Auxiliary

CPU (serial code) GPU (serial code)

GPU grid

GPU memory

P system info

P system configura on Auxiliary

REPEAT

CPU (serial code) GPU (serial code)

GPU memory

P system info

P system configura on
(incl. all possible membrane to

be generated during
computa on)

Auxiliary

Fig. 1. Scheme of a generic P system simulator on CUDA. For all images, the left part
belongs to the CPU side (host) and the right part the GPU (device). Top-left image
corresponds to the initialization, where the input model is read and GPU memory is
allocated. Top-right figure shows a GPU grid of threads reading information for rule
selection, and annotating the outcome. Bottom-left shows the execution of rules by
the threads, and the loop over selection and execution. Finally, bottom-right shows the
retrieval of the result of the simulation.

 a b c d e f o1 o2 o3 o4 o5 o6 o7 o8

a b c d e f oi

Ini al Mul set Objects ac ng as counters

Fig. 2. Unbounded (top) vs limited (bottom) representation of membranes.

In the solution for FACTORIZATION problem, the family of computing P sys-
tems uses minimal production. Thus, and when not having send-in rules, we can
guarantee that inside membranes there will be no more objects than the initial
multiset, but there can be fewer because the RHS of rules can be the empty
multiset. The latter causes minor impact for threads, if it is not frequent. The
data structure reduces the object density impact thanks to restricting the size of
membranes to just the size of the input multiset, but it has to store two values
per object: the multiset value, and the corresponding object symbol or identi-
fier. Indeed, now the objects are replaced when applying the rules, and since
there is not an array position for each object, we need to annotate which object
is being represented. This is called bounded representation, and can be seen in
Fig. 2, bottom. Thus, the downside of this design is that when using minimal
cooperation, a search for the objects appearing in the LHS has to be performed.
However, for this specific case (an ad-hoc simulator), it is not an issue, given
that we know exactly where to search in each stage beforehand. But a future
generic simulator will need to implement more elaborated algorithms.

Moreover, in a specific simulator, not all objects have to be defined in an
explicit way; that is, stored in the data structure for multiplicities. Given that
the simulator is very specific for a solution, it is possible to represent objects as
variables in the source code, or just to depend on certain variables, so the simu-
lator can infer easily the corresponding multiplicities. This is of special interest
for counters in the P system models. Normally, P system designs include objects
acting as counters. Their symbols depend on subscripts, but they are different
objects in any case. If they are treated as normal objects, and we cannot pro-
vide an upper bound for the size of membranes, then we would be wasting lot
of resources because only one counter object appear at once while allocating a
position to each of them. Moreover, specific simulators can use variables corre-
sponding to the subscript of counter object subscripts for the simulator. That
would be enough to maintain all the required information of the model, given
that it is easy to infer the multiplicity of an object acting as a counter if we
know the counter value.

5 Conclusions and Future Work

In this paper we show the main differences when implementing simulators for
generic and specific purposes. We also briefly describe some design decisions
to develop a specific simulator for a family of computing P systems solving the
FACTORIZATION problem. We have seen that thanks to using minimal production,
we are able to restrict the size of membrane representation in the simulator to
just the input multiset. Moreover, objects acting as counters do not need to be
explicitly represented in the simulator.

For future work, we plan to finalize the design and perform the implemen-
tation in order to test all the ideas and identify, if possible, more semantics
ingredients that help the parallel execution of rules. Another research line would
be to explore new features in GPUs that can help to the performance of the

simulator, such as Dynamic Parallelism or Cooperative Groups. Moreover, ker-
nel code compilation in runtime open doors to develop automatic CUDA code
generation tailored to input models.

Acknowledgments. The authors acknowledge the support from the research project
MABICAP TIN2017-89842-P, cofinanced by “Ministerio de Economa, Industria y Com-
petitividad” (MINECO) of Spain, through the “Agencia Estatal de Investigacin” (AEI),
and by “Fondo Europeo de Desarrollo Regional” (FEDER) of the European Union.

References

1. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.A., Pérez-
Hurtado, I., Pérez-Jiménez, M.J.: Simulation of P systems with active membranes
on CUDA. Briefings Bioinform. 11(3), 313–322 (2010)

2. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.A., Pérez-
Hurtado, I., Pérez-Jiménez, M.J.: Simulating a P system based efficient solution
to SAT by using GPUs. J. Logic Algebraic Program. 79(6), 317–325 (2010)

3. Mart́ınez-del-Amor, M.A.: Accelerating membrane systems simulators using high
performance computing with GPU, Ph.D. thesis, University of Seville, May 2013

4. Mart́ınez-del-Amor, M.A., Garćıa-Quismondo, M., Maćıas-Ramos, L.F., Valencia-
Cabrera, L., Riscos-Núñez, A., Pérez-Jiménez, M.J.: Simulating P systems on GPU
devices: a survey. Fundam. Inform. 136(3), 269–284 (2015)

5. Mart́ınez-del-Amor, M.A., Pérez-Carrasco, J., Pérez-Jiménez, M.J.: Characterizing
the parallel simulation of P systems on the GPU. Int. J. Unconventional Comput.
9(5–6), 405–424 (2013)

6. Orellana-Mart́ın, D., Valencia-Cabrera, L., Pérez-Jiménez, M.J.: The factorization
problem: a new approach through membrane systems. In: Accepted paper in Mem-
brane Computing Satellite Workshop of 17th International Conference on Unconven-
tional Computation and Natural Computation, 25–29 June, Fontainebleau, France
(2018)

	Design of Specific P Systems Simulators on GPUs
	1 Introduction
	2 Core Concepts of GPU Computing
	3 Generic Versus Specific Parallel Simulators
	4 Design of a Parallel Simulator
	5 Conclusions and Future Work
	References

