15 research outputs found

    Three-way security framework for cloud based IoT network

    Get PDF

    Novel authentication framework for securing communication in internet-of-things

    Get PDF
    Internet-of-Things (IoT) offers a big boon towards a massive network of connected devices and is considered to offer coverage to an exponential number of the smart appliance in the very near future. Owing to the nascent stage of evolution of IoT, it is shrouded by security loopholes because of various reasons. Review of existing research-based solution highlights the usage of conventional cryptographic-based solution over the traditional mechanism of data forwarding process between IoT nodes and gateway. The proposed system presents a novel solution to this problem by a model that is capable of performing a highly secured and cost-effective authentication process. The proposed system introduces Authentication Using Signature (AUS) as well as Security with Complexity Reduction (SCR) for the purpose to resist participation of any form of unknown threats. The outcome of the model shows better security strength with faster response time and energy saving of the IoT nodes

    Adjoining Internet of Things with Data Mining : A Survey

    Get PDF
    The Interactive Data Corporative (IDC) conjectures that by 2025 the worldwide data circle will develop to 163ZB (that is a trillion gigabytes) which is ten times the 16.1ZB of information produced in 2016. The Internet of Things is one of the hot topics of this living century and researchers are heading for mass adoption 2019 driven by better than-expected business results. This information will open one of a kind of user experience and another universe of business opening. The huge information produced by the Internet of Things (IoT) are considered of high business esteem, and information mining calculations can be connected to IoT to extract hidden data from information. This paper concisely discusses the work done in sequential manner of time in different fields of IOT along with its outcome and research gap. This paper also discusses the various aspects of data mining functionalities with IOT. The recommendation for the Challenges in IOT that can be adopted for betterment is given. Finally, this paper presents the vision for how IOT will have impact on changing the distant futur

    Advanced Lightweight Encryption Key Management Algorithms for IoT Networks

    Get PDF
    An Internet of Things (IoT) Network is a collection of sensors interconnected through a network that process and exchange data. IoT networks need sufficient resources to cope with the growing security challenges. In most cases, cryptography is implemented by symmetric and asymmetric encryption methods to cope with these security issues. Symmetric cryptography requires transmitting an encryption key to the receiver to decrypt the received encrypted messages. Consequently, secured key distribution techniques are the core for providing security and establishing a secured connection among objects. Encryption keys are frequently changed through key distribution mechanisms. Encrypted key exchange is a protocol that allows two parties who share the same key to communicate over an insecure network. This chapter outlines the challenges and core requirements for a robust key distribution mechanism, beginning with evaluating existing solutions and then detailing three innovative, efficient, and lightweight methods that balance the security level, network performance, and low processing overhead impact

    The Meeting of Acquaintances: A Cost-efficient Authentication Scheme for Light-weight Objects with Transient Trust Level and Plurality Approach

    Full text link
    Wireless sensor networks consist of a large number of distributed sensor nodes so that potential risks are becoming more and more unpredictable. The new entrants pose the potential risks when they move into the secure zone. To build a door wall that provides safe and secured for the system, many recent research works applied the initial authentication process. However, the majority of the previous articles only focused on the Central Authority (CA) since this leads to an increase in the computation cost and energy consumption for the specific cases on the Internet of Things (IoT). Hence, in this article, we will lessen the importance of these third parties through proposing an enhanced authentication mechanism that includes key management and evaluation based on the past interactions to assist the objects joining a secured area without any nearby CA. We refer to a mobility dataset from CRAWDAD collected at the University Politehnica of Bucharest and rebuild into a new random dataset larger than the old one. The new one is an input for a simulated authenticating algorithm to observe the communication cost and resource usage of devices. Our proposal helps the authenticating flexible, being strict with unknown devices into the secured zone. The threshold of maximum friends can modify based on the optimization of the symmetric-key algorithm to diminish communication costs (our experimental results compare to previous schemes less than 2000 bits) and raise flexibility in resource-constrained environments.Comment: 27 page

    The smart supply chain: a conceptual cyclic framework

    Get PDF
    Purpose: The objective of this work is to analyze the characteristics of the smart supply chain (SSC) and to propose a conceptual framework research. Given the pace of current technological change, there is a need to analyze the new features of the SSC, related to digital technologies and the incorporation of services. Design/methodology/approach: A systematic review of the literature is addressed, analyzing the latest studies on the subject. This methodology allows to propose a conceptualization of the SSC and incorporate new elements of analysis. Findings: The results show that much of the innovation and instrumentalization of supply chains involves incorporating digital services to expand their functionalities, especially in terms of agility and connectivity. The servitization of supply chains is therefore a key new feature. Put in relation to other characteristics identified in the literature, a conceptual cyclic framework is proposed for the SSC. Originality/value: This study contributes to strengthening the theoretical foundations of SSCs and serves as a guide for researchers and practitionersPeer Reviewe

    LDAKM-EIoT: Lightweight Device Authentication and Key Management Mechanism for Edge-Based IoT Deployment

    Get PDF
    In recent years, edge computing has emerged as a new concept in the computing paradigm that empowers several future technologies, such as 5G, vehicle-to-vehicle communications, and the Internet of Things (IoT), by providing cloud computing facilities, as well as services to the end users. However, open communication among the entities in an edge based IoT environment makes it vulnerable to various potential attacks that are executed by an adversary. Device authentication is one of the prominent techniques in security that permits an IoT device to authenticate mutually with a cloud server with the help of an edge node. If authentication is successful, they establish a session key between them for secure communication. To achieve this goal, a novel device authentication and key management mechanism for the edge based IoT environment, called the lightweight authentication and key management scheme for the edge based IoT environment (LDAKM-EIoT), was designed. The detailed security analysis and formal security verification conducted by the widely used Automated Validation of Internet Security Protocols and Applications (AVISPA) tool prove that the proposed LDAKM-EIoT is secure against several attack vectors that exist in the infrastructure of the edge based IoT environment. The elaborated comparative analysis of the proposed LDAKM-EIoT and different closely related schemes provides evidence that LDAKM-EIoT is more secure with less communication and computation costs. Finally, the network performance parameters are calculated and analyzed using the NS2 simulation to demonstrate the practical facets of the proposed LDAKM-EIoT

    IoMT Malware Detection Approaches: Analysis and Research Challenges

    Get PDF
    The advancement in Information and Communications Technology (ICT) has changed the entire paradigm of computing. Because of such advancement, we have new types of computing and communication environments, for example, Internet of Things (IoT) that is a collection of smart IoT devices. The Internet of Medical Things (IoMT) is a specific type of IoT communication environment which deals with communication through the smart healthcare (medical) devices. Though IoT communication environment facilitates and supports our day-to-day activities, but at the same time it has also certain drawbacks as it suffers from several security and privacy issues, such as replay, man-in-the-middle, impersonation, privileged-insider, remote hijacking, password guessing and denial of service (DoS) attacks, and malware attacks. Among these attacks, the attacks which are performed through the malware botnet (i.e., Mirai) are the malignant attacks. The existence of malware botnets leads to attacks on confidentiality, integrity, authenticity and availability of the data and other resources of the system. In presence of such attacks, the sensitive data of IoT communication may be disclosed, altered or even may not be available to the authorized users. Therefore, it becomes essential to protect the IoT/IoMT environment from malware attacks. In this review paper, we first perform the study of various types of malware attacks, and their symptoms. We also discuss some architectures of IoT environment along with their applications. Next, a taxonomy of security protocols in IoT environment is provided. Moreover, we conduct a comparative study on various existing schemes for malware detection and prevention in IoT environment. Finally, some future research challenges and directions of malware detection in IoT/IoMT environment are highlighted
    corecore