1,414 research outputs found

    Quantum Cost Optimization for Reversible Sequential Circuit

    Full text link
    Reversible sequential circuits are going to be the significant memory blocks for the forthcoming computing devices for their ultra low power consumption. Therefore design of various types of latches has been considered a major objective for the researchers quite a long time. In this paper we proposed efficient design of reversible sequential circuits that are optimized in terms of quantum cost, delay and garbage outputs. For this we proposed a new 3*3 reversible gate called SAM gate and we then design efficient sequential circuits using SAM gate along with some of the basic reversible logic gates.Comment: Quantum 4.12 (2013). arXiv admin note: substantial text overlap with arXiv:1312.735

    Mechanical transistors for logic-with-memory computing

    Full text link
    As a potential revolutionary topic in future information processing, mechanical computing has gained tremendous attention for replacing or supplementing conventional electronics vulnerable to power outages, security attacks, and harsh environments. Despite its potential for constructing intelligent matter towards nonclassical computing systems beyond the von Neumann architecture, most works on mechanical computing demonstrated that the ad hoc design of simple logic gates cannot fully realize a universal mechanical processing framework involving interconnected arithmetic logic components and memory. However, such a logic-with-memory computing architecture is critical for complex and persistent state-dependent computations such as sequential logic. Here we propose a mechanical transistor (M-Transistor), abstracting omnipresent temperatures as the input-output mechanical bits, which consists of a metamaterial thermal channel as the gate terminal driving a nonlinear bistable soft actuator to selectively connect the output terminal to two other variable thermal sources. This M-Transistor is an elementary unit to modularly form various combinational and sequential circuits, such as complex logic gates, registers (volatile memory), and long-term memories (non-volatile memory) with much fewer units than the electronic counterparts. Moreover, they can establish a universal processing core comprising an arithmetic circuit and a register in a compact, reprogrammable network involving periodic read, write, memory, and logic operations of the mechanical bits. Our work contributes to realizing a non-electric universal mechanical computing architecture that combines multidisciplinary engineering with structural mechanics, materials science, thermal engineering, physical intelligence, and computational science.Comment: 25 pages, 4 figures, Articl

    Reducing Delay and Quantum Cost in the Novel Design of Reversible Memory Elements

    Get PDF
    AbstractIn a computational model, that uses transitions from one state of the abstract machine to another, a necessary condition for reversibility is that, the relation of the mapping from states to their successors must be one-to-one. In these works, the primary focus of design is to optimize number of reversible gates and garbage outputs. The calculation of number of gates is not a good option to check the complexity of a circuit as each gate has different architectural complexity decided by a parameter called quantum cost. Delay, hardly addressed in the existing works available in literature, is another good parameter to be optimized for fast reversible computation. In this work, we have presented novel designs of basic sequential circuits like latch that are optimum in terms of delay, quantum cost and garbage. We have also demonstrated quantum cost efficient D-FF, SR-FF, JK-FF & T-FF, along with their master slave configurations

    Reconfigurable three-terminal logic devices using phase-change materials

    Get PDF
    Conventional solid-state and mass storage memories (such as SRAM, DRAM and the hard disk drive HDD) are facing many technological challenges to meet the ever-increasing demand for fast, low power and cheap data storage solutions. This is compounded by the current conventional computer architectures (such as the von Neumann architecture) with separate processing and storage functionalities and hence data transfer bottlenecks and increased silicon footprint. Beyond the von Neumann computer architecture, the combination of arithmetic-logic processing and (collocally) storage circuits provide a new and promising alternative for computer systems that overcome the many limitations of current technology. However, there are many technical challenges that face the implementation of universal blocks of both logic and memory functions using conventional silicon technology (transistor-transistor logic - TTL, and complementary metal oxide semiconductors - CMOS). Phase-change materials, such as Ge2Sb2Te5 (GST), provide a potential complement or replacement to these technologies to provide both processing and, collocally, storage capability. Existing research in phase-change memory technologies focused on two-terminal non-volatile devices for different memory and logic applications due to their ability to achieve logic-resistive switching in nanosecond time scale, their scalability down to few nanometer-scale cells, and low power requirements. To perform logic functionality, current two-terminal phase-change logic devices need to be connected in series or parallel circuits, and require sequential inputs to perform the required logic function (such as NAND and NOR). In this research programme, three-terminal (3T) non-volatile phase-change memories are proposed and investigated as potential alternative logic cells with simultaneous inputs as reconfigurable, non-volatile logic devices. A vertical 3T logic device structure is proposed in this work based on existing phase-change based memory cell architecture and original concept work by Ovshinsky. A comprehensive, multi-physics finite-element model of the vertical 3T device was constructed in Comsol Multiphysics. This model solves Laplace's equation for the electric potential due to the application of voltage sources. The calculated electric potential and fields provide the Joule heating source in the device, which is used to compute the temperature distribution through solution of the heat diffusion equation, which is necessary to activate the thermally-driven phase transition process. The physically realistic and computationally efficient nucleation- growth model was numerically implemented to model the phase change and resistance change in the Ge2Sb2Te5 (GST) phase-change material in the device, which is combined with the finite- element model using the Matlab programming interface. The changes in electrical and thermal conductivities in the GST region are taken into account following the thermally activated phase transformations between the amorphous-crystalline states using effective medium theory. To determine the appropriate voltage and temperature conditions for the SET and RESET operations, and to optimise the materials and thicknesses of the thermal and heating layers in the device, comprehensive steady-state parametric simulations were carried out using the finite-element multi-physics model. Simulations of transient cycles of writing (SET) and erasing (RESET) processes using appropriate voltage pulses were then carried out on the designed vertical 3T device to study the phase transformations for practical reconfigurable logic operations. The simulations indicated excellent resistance contrast between the logic 1 and 0 states, and successfully demonstrated the feasibility of programming the logic functions of NAND and NOR gates using this 3T configuration
    • …
    corecore