310,579 research outputs found

    A Functional Architecture Approach to Neural Systems

    Get PDF
    The technology for the design of systems to perform extremely complex combinations of real-time functionality has developed over a long period. This technology is based on the use of a hardware architecture with a physical separation into memory and processing, and a software architecture which divides functionality into a disciplined hierarchy of software components which exchange unambiguous information. This technology experiences difficulty in design of systems to perform parallel processing, and extreme difficulty in design of systems which can heuristically change their own functionality. These limitations derive from the approach to information exchange between functional components. A design approach in which functional components can exchange ambiguous information leads to systems with the recommendation architecture which are less subject to these limitations. Biological brains have been constrained by natural pressures to adopt functional architectures with this different information exchange approach. Neural networks have not made a complete shift to use of ambiguous information, and do not address adequate management of context for ambiguous information exchange between modules. As a result such networks cannot be scaled to complex functionality. Simulations of systems with the recommendation architecture demonstrate the capability to heuristically organize to perform complex functionality

    A 2 degree-of-freedom SOI-MEMS translation stage with closed loop positioning

    Get PDF
    This research contains the design, analysis, fabrication, and characterization of a closed loop XY micro positioning stage. The XY micro positioning stage is developed by adapting parallel-kinematic mechanisms, which have been widely used for macro and meso scale positioning systems, to silicon-based micropositioner. Two orthogonal electrostatic comb drives are connected to moving table through 4-bar mechanism and independent hinges which restrict unwanted rotation in 2-degree-of-freedom translational stage. The XY micro positioning stage is fabricated on SOI wafer with three photolithography patterning processes followed by series of DRIE etching and HF etching to remove buried oxide layer to release the end-effector of the device. The fabricated XY micro positioning stage is shown in Fig1 with SEM images. The device provides a motion range of 20 microns in each direction at the driving voltage of 100V. The resonant frequency of the XY stage under ambient conditions is 811 Hz with a high quality factor of 40 achieved from parallel kinematics. The positioning loop is closed using a COTS capacitance-to-voltage conversion IC and a PID controller built in D-space is used to control position with an uncertainty characterized by a standard distribution of 5.24nm and a approximate closed-loop bandwidth of 27Hz. With the positioning loop, the rise time and settling time for closed-loop system are 50ms and 100ms. With sinusoidal input of ω=1Hz, the maximum phase difference of 108nm from reference input is obtained with total motion range of 8μm

    What constitutes a nanoswitch? A Perspective

    Full text link
    Progress in the last two decades has effectively integrated spintronics and nanomagnetics into a single field, creating a new class of spin-based devices that are now being used both to Read (R) information from magnets and to Write (W) information onto magnets. Many other new phenomena are being investigated for nano-electronic memory as described in Part II of this book. It seems natural to ask whether these advances in memory devices could also translate into a new class of logic devices. What makes logic devices different from memory is the need for one device to drive another and this calls for gain, directionality and input-output isolation as exemplified by the transistor. With this in mind we will try to present our perspective on how W and R devices in general, spintronic or otherwise, could be integrated into transistor-like switches that can be interconnected to build complex circuits without external amplifiers or clocks. We will argue that the most common switch used to implement digital logic based on complementary metal oxide semiconductor (CMOS) transistors can be viewed as an integrated W-R unit having an input-output asymmetry that give it gain and directionality. Such a viewpoint is not intended to provide any insight into the operation of CMOS switches, but rather as an aid to understanding how W and R units based on spins and magnets can be combined to build transistor-like switches. Next we will discuss the standard W and R units used for magnetic memory devices and present one way to integrate them into a single unit with the input electrically isolated from the output. But we argue that this integrated W-R unit would not provide the key property of gain. We will then show that the recently discovered giant spin Hall effect could be used to construct a W-R unit with gain and suggest other possibilities for spin switches with gain.Comment: 27 pages. To appear in Emerging Nanoelectronic Devices, Editors: An Chen, James Hutchby, Victor Zhirnov and George Bourianoff, John Wiley & Sons (to be published
    • …
    corecore