573 research outputs found

    In Vivo Evaluation of the Secure Opportunistic Schemes Middleware using a Delay Tolerant Social Network

    Full text link
    Over the past decade, online social networks (OSNs) such as Twitter and Facebook have thrived and experienced rapid growth to over 1 billion users. A major evolution would be to leverage the characteristics of OSNs to evaluate the effectiveness of the many routing schemes developed by the research community in real-world scenarios. In this paper, we showcase the Secure Opportunistic Schemes (SOS) middleware which allows different routing schemes to be easily implemented relieving the burden of security and connection establishment. The feasibility of creating a delay tolerant social network is demonstrated by using SOS to power AlleyOop Social, a secure delay tolerant networking research platform that serves as a real-life mobile social networking application for iOS devices. SOS and AlleyOop Social allow users to interact, publish messages, and discover others that share common interests in an intermittent network using Bluetooth, peer-to-peer WiFi, and infrastructure WiFi.Comment: 6 pages, 4 figures, accepted in ICDCS 2017. arXiv admin note: text overlap with arXiv:1702.0565

    Internet protocol MANET vs named data MANET: A critical evaluation

    Get PDF
    Many researches have been done in the field of mobile networking, specifically in the field of ad-hoc networks.The major aim of these networks is the delivery of data to a given node at the destination, irrespective of its location.Mobile Ad-hoc Network (MANET) employs the traditional TCP/IP structure to provide end-to-end communication between nodes (we named this type of architecture is IP-MANET).However, due to their mobility and the limited resource in wireless networks, each layer in the TCP/IP model requires redefinition or modifications to function efficiently in MANET. Named Data MANET (NDMANET) architecture is a recently emerging research area. The in-network chunk-based caching feature of NDN is beneficial in coping with the mobility and intermittent connectivity challenges in MANETs.In the natural disaster field, MANET is considered a challenging task because of the unpredictable changes in the network topology due to the absence of any centralized control.The goals of this paper have two ways: first, this study provides a performance comparison of IP-MANET to ND-MANET in terms of throughput, delay, and packet loss.While the second contribution is to identify which architecture has an impact on the natural disaster (i.e., Flooding disaster) in rural areas and suggests which one may perform better.For experimental purposes, our analyses IP-MANET and ND-MANET by extensive simulations in the NS 3 simulator under a number of different network scenarios, and show that how number of nodes and variety packets size affect their performance

    Cross-layer Peer-to-Peer Computing in Mobile Ad Hoc Networks

    Get PDF
    The future information society is expected to rely heavily on wireless technology. Mobile access to the Internet is steadily gaining ground, and could easily end up exceeding the number of connections from the fixed infrastructure. Picking just one example, ad hoc networking is a new paradigm of wireless communication for mobile devices. Initially, ad hoc networking targeted at military applications as well as stretching the access to the Internet beyond one wireless hop. As a matter of fact, it is now expected to be employed in a variety of civilian applications. For this reason, the issue of how to make these systems working efficiently keeps the ad hoc research community active on topics ranging from wireless technologies to networking and application systems. In contrast to traditional wire-line and wireless networks, ad hoc networks are expected to operate in an environment in which some or all the nodes are mobile, and might suddenly disappear from, or show up in, the network. The lack of any centralized point, leads to the necessity of distributing application services and responsibilities to all available nodes in the network, making the task of developing and deploying application a hard task, and highlighting the necessity of suitable middleware platforms. This thesis studies the properties and performance of peer-to-peer overlay management algorithms, employing them as communication layers in data sharing oriented middleware platforms. The work primarily develops from the observation that efficient overlays have to be aware of the physical network topology, in order to reduce (or avoid) negative impacts of application layer traffic on the network functioning. We argue that cross-layer cooperation between overlay management algorithms and the underlying layer-3 status and protocols, represents a viable alternative to engineer effective decentralized communication layers, or eventually re-engineer existing ones to foster the interconnection of ad hoc networks with Internet infrastructures. The presented approach is twofold. Firstly, we present an innovative network stack component that supports, at an OS level, the realization of cross-layer protocol interactions. Secondly, we exploit cross-layering to optimize overlay management algorithms in unstructured, structured, and publish/subscribe platforms

    Airborne Network Data Availability Using Peer to Peer Database Replication on a Distributed Hash Table

    Get PDF
    The concept of distributing one complex task to several smaller, simpler Unmanned Aerial Vehicles (UAVs) as opposed to one complex UAV is the way of the future for a vast number of surveillance and data collection tasks. One objective for this type of application is to be able to maintain an operational picture of the overall environment. Due to high bandwidth costs, centralizing all data may not be possible, necessitating a distributed storage system such as mobile Distributed Hash Table (DHT). A difficulty with this maintenance is that for an Airborne Network (AN), nodes are vehicles and travel at high rates of speed. Since the nodes travel at high speeds they may be out of contact with other nodes and their data becomes unavailable. To address this the DHT must include a data replication strategy to ensure data availability. This research investigates the percentage of data available throughout the network by balancing data replication and network bandwidth. The DHT used is Pastry with data replication using Beehive, running over an 802.11 wireless environment, simulated in Network Simulator 3. Results show that high levels of replication perform well until nodes are too tightly packed inside a given area which results in too much contention for limited bandwidth

    Overlay virtualized wireless sensor networks for application in industrial internet of things : a review

    Get PDF
    Abstract: In recent times, Wireless Sensor Networks (WSNs) are broadly applied in the Industrial Internet of Things (IIoT) in order to enhance the productivity and efficiency of existing and prospective manufacturing industries. In particular, an area of interest that concerns the use of WSNs in IIoT is the concept of sensor network virtualization and overlay networks. Both network virtualization and overlay networks are considered contemporary because they provide the capacity to create services and applications at the edge of existing virtual networks without changing the underlying infrastructure. This capability makes both network virtualization and overlay network services highly beneficial, particularly for the dynamic needs of IIoT based applications such as in smart industry applications, smart city, and smart home applications. Consequently, the study of both WSN virtualization and overlay networks has become highly patronized in the literature, leading to the growth and maturity of the research area. In line with this growth, this paper provides a review of the development made thus far concerning virtualized sensor networks, with emphasis on the application of overlay networks in IIoT. Principally, the process of virtualization in WSN is discussed along with its importance in IIoT applications. Different challenges in WSN are also presented along with possible solutions given by the use of virtualized WSNs. Further details are also presented concerning the use of overlay networks as the next step to supporting virtualization in shared sensor networks. Our discussion closes with an exposition of the existing challenges in the use of virtualized WSN for IIoT applications. In general, because overlay networks will be contributory to the future development and advancement of smart industrial and smart city applications, this review may be considered by researchers as a reference point for those particularly interested in the study of this growing field

    Using Distributed Ledger Technologies in VANETs to Achieve Trusted Intelligent Transportation Systems

    Get PDF
    With the recent advancements in the networking realm of computers as well as achieving real-time communication between devices over the Internet, IoT (Internet of Things) devices have been on the rise; collecting, sharing, and exchanging data with other connected devices or databases online, enabling all sorts of communications and operations without the need for human intervention, oversight, or control. This has caused more computer-based systems to get integrated into the physical world, inching us closer towards developing smart cities. The automotive industry, alongside other software developers and technology companies have been at the forefront of this advancement towards achieving smart cities. Currently, transportation networks need to be revamped to utilize the massive amounts of data being generated by the public’s vehicle’s on-board devices, as well as other integrated sensors on public transit systems, local roads, and highways. This will create an interconnected ecosystem that can be leveraged to improve traffic efficiency and reliability. Currently, Vehicular Ad-hoc Networks (VANETs) such as vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-grid (V2G) communications, all play a major role in supporting road safety, traffic efficiency, and energy savings. To protect these devices and the networks they form from being targets of cyber-related attacks, this paper presents ideas on how to leverage distributed ledger technologies (DLT) to establish secure communication between vehicles that is decentralized, trustless, and immutable. Incorporating IOTA’s protocols, as well as utilizing Ethereum’s smart contracts functionality and application concepts with VANETs, all interoperating with Hyperledger’s Fabric framework, several novel ideas can be implemented to improve traffic safety and efficiency. Such a modular design also opens up the possibility to further investigate use cases of the blockchain and distributed ledger technologies in creating a decentralized intelligent transportation system (ITS)
    • …
    corecore