6 research outputs found

    FPGA implementation of HEVC intra prediction using high-level synthesis

    Get PDF
    Intra prediction algorithm in the recently developed High Efficiency Video Coding (HEVC) standard has very high computational complexity. High-level synthesis (HLS) tools are started to be successfully used for FPGA implementations of digital signal processing algorithms. Therefore, in this paper, the first FPGA implementation of HEVC intra prediction algorithm using a HLS tool in the literature is proposed. The proposed HEVC intra prediction hardware, in the worst case, can process 35 full HD (1920×1080) video frames per second. Using HLS tool significantly reduced the FPGA development time. Therefore, HLS tools can be used for FPGA implementation of HEVC video encoder

    FPGA implementations of HEVC sub-pixel interpolation using high-level synthesis

    Get PDF
    Sub-pixel interpolation is one of the most computationally intensive parts of High Efficiency Video Coding (HEVC) video encoder and decoder. High-level synthesis (HLS) tools are started to be successfully used for FPGA implementations of digital signal processing algorithms. Therefore, in this paper, the first FPGA implementation of HEVC sub-pixel (half-pixel and quarter-pixel) interpolation algorithm using a HLS tool in the literature is proposed. The proposed HEVC sub-pixel interpolation hardware is implemented on Xilinx FPGAs using Xilinx Vivado HLS tool. It, in the worst case, can process 45 quad full HD (3840×2160) video frames per second. Using HLS tool significantly reduced the FPGA development time. Therefore, HLS tools can be used for FPGA implementation of HEVC video encoder

    FGPA implementations of motion estimation algorithms using Vivado high level synthesis

    Get PDF
    Joint collaborative team on video coding (JCT-VC) recently developed a new international video compression standard called High Efficiency Video Coding (HEVC). HEVC has 50% better compression efficiency than previous H.264 video compression standard. HEVC achieves this video compression efficiency by significantly increasing the computational complexity. Motion estimation is the most computationally complex part of video encoders. Integer motion estimation and fractional motion estimation account for 70% of the computational complexity of an HEVC video encoder. High-level synthesis (HLS) tools are started to be successfully used for FPGA implementations of digital signal processing algorithms. They significantly decrease design and verification time. Therefore, in this thesis, we proposed the first FPGA implementation of HEVC full search motion estimation using Vivado HLS. Then, we proposed the first FPGA implementations of two fast search (diamond search and TZ search) algorithms using Vivado HLS. Finally, we proposed the first FPGA implementations of HEVC fractional interpolation and motion estimation using Vivado HLS. We used several HLS optimization directives to increase performance and decrease area of these FPGA implementations

    Design of H.264 video encoder with C to RTL design tool

    No full text

    HEVC-videokoodekin intra-ennustuksen toteutus FPGA-piireille C-kielestä syntesoimalla

    Get PDF
    High Efficiency Video Coding (HEVC) is the latest video coding standard in video compression. With HEVC, it is possible to compress the video with half the bitrate compared to the previous video coding standard, Advanced Video Coding (AVC), with the same video quality. Now even, the complexity of the encoder is significantly larger. As designs become more and more complex, traditional hardware (HW) description languages (HDLs), such as Very High Speed Integrated Circuit Hardware Description Language (VHDL) or Verilog, can not be used to present the designs without increasing effort. The solution for this is a higher abstraction language for describing HW. High-Level Synthesis (HLS) is a way of using a programming language like C or C++ to describe the HW and automatically generating the HDL from it. This makes the code easier to understand and decreases the time used for implementing the design. This Thesis uses Catapult-C to create an HLS-based implementation of HEVC intra prediction for a Field Programmable Gate Array (FPGA). The HEVC encoder used in this Thesis is open source Kvazaar which has been developed at Tampere University of Technology. The objective is to implement an intra prediction accelerator faster than implementing it with register-transfer level (RTL) using VHDL or Verilog and still get comparable area and performance. This Thesis presents six development versions of the intra prediction accelerator. The complexity of the accelerator grows gradually, as more features were added to it. The final version is able to perform the intra prediction, mode cost computation and mode decision for Full HD video at 24.5 fps using 11 662 adaptive logic modules (ALMs) on an Altera Cyclone V FPGA. This Thesis presents the benefits of Catapult-C and HLS. The implementation results were comparable to hand coded RTL but achieved with a fraction of the estimated time for a VHDL implementation. As a rough estimate, if something takes a month to implement in VHDL, it takes a week with HLS. The biggest gain with HLS is the fast process of changes. Only the C implementation needs to change. The testbench and the RTL-code are generated automatically
    corecore