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Abstract—Sub-pixel interpolation is one of the most 
computationally intensive parts of High Efficiency Video Coding 
(HEVC) video encoder and decoder. High-level synthesis (HLS) 
tools are started to be successfully used for FPGA 
implementations of digital signal processing algorithms. 
Therefore, in this paper, the first FPGA implementation of 
HEVC sub-pixel (half-pixel and quarter-pixel) interpolation 
algorithm using a HLS tool in the literature is proposed. The 
proposed HEVC sub-pixel interpolation hardware is 
implemented on Xilinx FPGAs using Xilinx Vivado HLS tool. It, 
in the worst case, can process 45 quad full HD (3840x2160) video 
frames per second. Using HLS tool significantly reduced the 
FPGA development time. Therefore, HLS tools can be used for 
FPGA implementation of HEVC video encoder. 
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I. INTRODUCTION  

Joint collaborative team on video coding (JCT-VC) 
recently developed a new video compression standard called 
High Efficiency Video Coding (HEVC) [1]-[3]. HEVC 
provides 50% better coding efficiency than H.264 video 
compression standard. Sub-pixel (half-pixel and quarter-pixel) 
interpolation is one of the most computationally intensive 
parts of HEVC video encoder and decoder. On average, one 
fourth of the HEVC encoder complexity and 50% of the 
HEVC decoder complexity are caused by sub-pixel 
interpolation [4].  

In H.264, a 6-tap FIR filter is used for half-pixel 
interpolation and linear interpolation is used for quarter-pixel 
interpolation [5]. In HEVC, three different 8-tap FIR filters are 
used for both half-pixel and quarter-pixel interpolations [6]. In 
H.264, 4x4 and 16x16 block sizes are used. In HEVC, 
prediction unit (PU) sizes can be from 4x4 to 64x64. 
Therefore, HEVC sub-pixel interpolation is more complex 
than H.264 sub-pixel interpolation. 

In this paper, the first high-level synthesis (HLS) 
implementation of HEVC sub-pixel interpolation algorithm in 
the literature is proposed. The proposed HEVC sub-pixel 
interpolation hardware is implemented on Xilinx FPGAs using 
Xilinx Vivado HLS tool. HLS tools accept their inputs in 
different formats [7]. Xilinx Vivado HLS tool takes C or C++ 
codes as input, and generates Verilog or VHDL codes. The C 
codes given as input to Xilinx Vivado HLS tool are developed 
based on the HEVC sub-pixel interpolation software 

implementation in the HEVC reference software video 
encoder (HM) version 15 [8]. Three HEVC sub-pixel 
interpolation HLS implementations are done. In the first one 
(MM), in the C codes, multiplications with constants are 
implemented using multiplication operations. In the second 
one (MAS), multiplications with constants are implemented 
using addition and shift operations. In the last one (MMCM), 
addition and shift operations are implemented using Hcub 
multiplierless constant multiplication algorithm [9]. 

Verilog RTL codes generated by Xilinx Vivado HLS tool 
for the three HEVC sub-pixel interpolation HLS 
implementations are verified to work in a Xilinx Virtex 6 
FPGA. The implementation results show that the proposed 
HEVC sub-pixel interpolation FPGA implementation, in the 
worst case, can process 45 quad full HD (3840x2160) video 
frames per second with acceptable hardware area. Using HLS 
tool significantly reduced the FPGA development time. 
Therefore, HLS tools can be used for FPGA implementation 
of HEVC video encoder. 

A few HLS implementations for HEVC video compression 
standard are proposed in the literature [10], [11]. A few HLS 
implementations for H.264 video compression standard are 
proposed in the literature [12]. In Section III, the HEVC sub-
pixel interpolation HLS implementation proposed in this paper 
is compared with the handwritten HEVC sub-pixel 
interpolation hardware implementations proposed in the 
literature [13]-[16]. 

II. HEVC SUB-PIXEL INTERPOLATION ALGORITHM 

Integer pixels (Ax,y), half pixels and quarter pixels in a PU 
are shown in Fig. 1. Type A, type B and type C 8-tap FIR 
filters used for sub-pixel interpolation are shown in (1), (2), 
and (3), respectively. The shift1 value is determined based on 
bit depth of the pixel. The half pixels a, b, c are interpolated 
from nearest integer pixels in horizontal direction using type 
A, type B and type C filters, respectively. The half-pixels d, h, 
n are interpolated from nearest integer pixels in vertical 
direction using type A, type B and type C filters, respectively. 
The quarter pixels e, f, g are interpolated from the nearest a, b, 
c half pixels respectively in vertical direction using type A 
filter. The quarter pixels i, j, k are interpolated similarly using 
type B filter. The quarter pixels p, q, r are interpolated 
similarly using type C filter. 
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Fig. 1. Integer, Half and Quarter Pixels 

, = (− , + 4 ∗ , − 10 ∗ , +	58 ∗ , +17 ∗ , − 5 ∗ , +	 , ) ≫ ℎ 1  
(1) 

, = (− , + 4 ∗ , − 11 ∗ , +	40 ∗ , +40 ∗ , − 11 ∗ , + 	4 ∗ , − , ) ≫ ℎ 1  
(2) 

, = (− , − 5 ∗ , + 17 ∗ , +	58 ∗ , −10 ∗ , + 4 ∗ , −	 , ) ≫ ℎ 1  
(3) 

III. HEVC SUB-PIXEL INTERPOLATION HLS 

IMPLEMENTATIONS 

The proposed HLS implementation of HEVC sub-pixel 
interpolation is shown in Fig. 2. The proposed HLS 
implementation is synthesized to Verilog RTL using Xilinx 
Vivado HLS tool. The C codes given as input to Xilinx 
Vivado HLS tool are developed based on the HEVC sub-pixel 
interpolation software implementation in the HEVC reference 
software video encoder (HM) version 15 [8]. 

In the proposed HLS implementation, half pixels and 
quarter pixels for an 8x8 PU are interpolated using 15x15 
integer pixels. Half pixels and quarter pixels for larger PU 
sizes can be interpolated by interpolating the half pixels and 
quarter pixels for each 8x8 part of a PU separately. In the C 
codes, 15 integer pixels are taken as input in each clock cycle. 
8 a, 8 b and 8 c half-pixels are interpolated in parallel in each 
clock cycle. 15x8 a, 15x8 b, and 15x8 c half pixels are 
interpolated in 15 clock cycles, and they are stored into 
registers for quarter pixel interpolation. In the same 15 clock 
cycles, 15x8 integer pixels are also stored into registers for 
interpolating d, h, n half pixels. Then, 8x8 d, 8x8 h, 8x8 n half 
pixels are interpolated using 15x8 integer pixels. Finally, all 
quarter pixels (e, f, g, i, j, k, p, q, r) are interpolated using 15x8 
a, 15x8 b, and 15x8 c half pixels. 

Three HEVC sub-pixel interpolation HLS implementations 
are done. In the first one (MM), in the C codes, multiplications 
with constants are implemented using multiplication 
operations. In the second one (MAS), multiplications with 
constants are implemented using addition and shift operations.  

In the last one (MMCM), addition and shift operations are 
implemented using Hcub multiplierless constant multiplication 
algorithm [9].   

Verilog RTL codes generated by Xilinx Vivado HLS tool 
for these three HLS implementations are verified with RTL 
simulations. RTL simulation results matched the results of 
HEVC sub-pixel interpolation software implementation in the 
HEVC reference software video encoder (HM) version 15 [8]. 
The Verilog RTL codes are synthesized and mapped to a 
Xilinx XC6VLX550T FF1760 FPGA with speed grade 2 using 
Xilinx ISE 14.7. The FPGA implementations are verified with 
post place and route simulations. 

We used several optimizations offered by Xilinx Vivado 
HLS tool to increase the performance and decrease the area of 
the proposed HLS implementations [17]. We tried to use loop 
unrolling directive. However, loop unrolling directive did not 
work correctly for the proposed HLS implementations. In [18], 
it is mentioned that loop unrolling may cause memory access 
problems in HLS designs, and current generation of HLS tools 
may ignore these problems. As shown in Table I, the 
performance of the HLS implementation, which implements 
multiplications with constants using multiplication operations, 
without loop unrolling is very low. Therefore, we performed 
manual loop unrolling in the proposed HLS implementations 
to increase their performances. 

Allocation (ALC) directive is used to specify the 
maximum number of resources that can be used in hardware. It 
forces the HLS tool to perform resource sharing. It therefore 
decreases the hardware area. In the proposed HLS 
implementations, ALC is used for subtraction, addition, 
multiplication, and shifting operations. Pipeline (PIPE) 
directive performs pipelining to increase the performance. It is 
used in the proposed HLS implementations.  

Resource (RES) directive is used to specify which resource 
will be used to implement a variable such as an array, 
arithmetic operation or function argument. In the proposed 
HLS implementations, it is used to store input integer pixels 
into BRAMs. Array map (AMAP) directive is used to map 
multiple small arrays into a single large array. The large array 
can be targeted to a single large memory (RAM or FIFO) 
resource. It is also used to control how (horizontal or vertical) 
data is stored in BRAMs. In the proposed HLS 
implementations, it is used to control how data is stored in 
BRAMs so that the number of BRAMs used in the hardware is 
reduced as much as possible.  

Array partition (APAR) directive partitions the large arrays 
into multiple smaller arrays or individual registers for parallel 
data accesses. In the proposed HLS implementations, it is used 
to partition the arrays that store a, b, and c half pixels to 
increase quarter pixel interpolation performance. Xilinx 
Vivado HLS tool provides a specific library for designing bit-
accurate (BIT) models in C codes. In the proposed HLS 
implementations, bit accurate model is used to decrease adder 
bit widths and therefore hardware area.  
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Fig. 2. HEVC Sub-Pixel Interpolation HLS Implementation 

The FPGA implementation results for the first HLS 
implementation (MM) are given in Table II. In this HLS 
implementation, in the C codes, multiplications with constants 
are implemented using multiplication operations. These 
multiplication operations are mapped to DSP48 blocks in RTL 
synthesis. This decreased the number of LUTs and DFFs used 
in the hardware. Allocation (ALC), pipeline (PIPE), resource 
(RES) and array map (AMAP) directives are used in this HLS 
implementation. In the table, M shows the number of 
multipliers used in the ALC directive. 

The FPGA implementation results for the second HLS 
implementation (MAS) are given in Table III. In this HLS 
implementation, multiplications with constants are 
implemented using addition and shift operations. This HLS 
implementation does not use any DSP48 blocks, but it uses 
more LUTs and DFFs than MM. It also has higher 
performance than MM. Pipeline (PIPE), resource (RES) and 
array map (AMAP) directives are used in this HLS 
implementation. 

The FPGA implementation results for the last HLS 
implementation (MMCM) are given in Table IV. In this HLS 
implementation, addition and shift operations are implemented 
using Hcub multiplierless constant multiplication (MCM) 
algorithm [9]. Common sub-expressions are calculated in 
different equations and same integer pixel is multiplied with 
different constant coefficients in different equations. 
Therefore, in this HLS implementation, common sub-
expressions in different FIR filter equations are calculated 
once, and the result is used in all the equations. This HLS 
implementation also uses Hcub MCM algorithm in order to 
reduce number and size of the adders, and to minimize the 
adder tree depth [9]. Hcub algorithm tries to minimize number 
of adders, their bit size and adder tree depth in a multiplier 
block, which multiplies a single input with multiple constants. 
This HLS implementation has the best performance with 
acceptable hardware area. Allocation (ALC), pipeline (PIPE), 
array partition (APAR) directives and bit-accurate (BIT) 

model are used in this HLS implementation. In the table, A 
and S show the number of adders and subtractors used in the 
ALC directive, respectively. 

The best HEVC sub-pixel interpolation HLS 
implementation proposed in this paper (MMCM with 
ALC(A500_S500)_APAR_PIPE_BIT) is compared with the 
handwritten HEVC sub-pixel interpolation hardware 
implementations proposed in the literature [13]-[16]. The 
comparison results are shown in Table V. 

The proposed MMCM HLS implementation is similar to 
the handwritten HEVC sub-pixel interpolation hardware 
implementation proposed in [13]. In [13], common sub- 
expressions in different FIR filter equations are calculated 
once, and the result is used in all the equations. Also, addition 
and shift operations are implemented using Hcub MCM 
algorithm. In [13], the handwritten Verilog RTL codes are 
synthesized and mapped to a Xilinx XC6VLX130T FF1156 
FPGA with speed grade 3. In this paper, the handwritten 
Verilog RTL codes proposed in [13] are synthesized and 
mapped to a Xilinx XC6VLX550T FF1760 FPGA with speed 
grade 2 for fair comparison with the proposed MMCM HLS 
implementation. The proposed MMCM HLS implementation 
has higher performance than the handwritten HEVC sub-pixel 
interpolation hardware implementation proposed in [13] at the 
expense of larger area.  

Since the handwritten HEVC sub-pixel interpolation 
hardware implementation proposed in [14] is designed only 
for motion compensation (MC), it has higher performance and 
lower area than the proposed MMCM HLS implementation. 
The handwritten HEVC sub-pixel interpolation hardware 
implementation proposed in [15] has lower performance and 
therefore lower area than the proposed MMCM HLS 
implementation. In addition, it requires higher clock frequency 
to achieve real time performance. The handwritten HEVC sub-
pixel interpolation hardware implementation proposed in [16] 
has both lower performance and larger area than the proposed 
MMCM HLS implementation. 
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TABLE I.  HLS IMPLEMENTATION WITHOUT MANUAL LOOP UNROLLING WITH MULTIPLIERS RESULTS 
Optimizations Slice LUT DFF BRAM DSP48 Freq. (MHz) Clock Cycles (8x8 PU) Fps 

NOOPT 885 2565 1411 1 15 250 1921 1 3840x2160 

TABLE II.  HLS IMPLEMENTATION WITH MULTIPLIERS RESULTS  
Optimizations Slice LUT DFF BRAM DSP48 Freq. (MHz) Clock Cycles (8x8 PU) Fps 

NOOPT 4623 14110 7526 0 113 200 156 10 3840x2160 

ALC(M128) 4769 14133 6226 0 135 168 148 9 3840x2160 

PIPE 4938 14086 8736 0 113 201 56 28 3840x2160 

RES(BRAM) 4723 13883 7395 4 113 201 156 10 3840x2160 

ALC(M128)_RES(BRAM)_PIPE 5197 14366 8000 4 147 167 56 23 3840x2160 

ALC(M128)_AMAP(4)_RES(BRAM)_PIPE 4299 12401 7964 2 147 167 56 23 3840x2160 

ALC(M20)_AMAP(4)_RES(BRAM)_PIPE 4299 13100 8037 2 59 168 56 23 3840x2160 

TABLE III.  HLS IMPLEMENTATION WITH ADDERS AND SHIFTERS RESULTS  
Optimizations Slice LUT DFF BRAM DSP48 Freq. (MHz) Clock Cycles (8x8 PU) Fps 

NOOPT 4809 15629 9095 0 0 202 133 12 3840x2160 

AMAP(4)_RES(BRAM)_PIPE 4891 15716 9436 2 0 200 55 28 3840x2160 

TABLE IV.  HLS IMPLEMENTATION WITH MCM RESULTS  

Optimizations Slice LUT DFF BRAM DSP48 Freq. (MHz) Clock Cycles (8x8 PU) Fps 

NOOPT 4850 15632 6673 2 0 201 195 8 3840x2160 

ALC(A500_S500)_APAR_PIPE 5288 14619 10118 0 0 168 29 45 3840x2160 

ALC(A500_S500)_APAR_PIPE_BIT 4426 14225 9984 0 0 168 29 45 3840x2160 

 
TABLE V.  HEVC SUB-PIXEL INTERPOLATION HARDWARE COMPARISON 

 
[13] [14] [15] [16] 

Proposed 
(MMCM)

Tech. 
  Xilinx 
Virtex 6 

90 nm 150 nm 90 nm
  Xilinx 
Virtex 6

Gate/Slice 
Count 

1597 32.5 K 30.2 K 224 K 4426

Freq.  
(MHz) 

200 171 312 333 168

Fps 30 QFHD 60 QFHD 30 QFHD 30 FHD 45 QFHD

Design ME + MC MC ME + MC ME + MC ME + MC
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