
FPGA Implementations of HEVC Sub-Pixel
Interpolation Using High-Level Synthesis

Firas Abdul Ghani, Ercan Kalali, Ilker Hamzaoglu

Faculty of Engineering and Natural Sciences, Sabanci University
34956 Tuzla, Istanbul, Turkey

{firas, ercankalali, hamzaoglu}@sabanciuniv.edu

Abstract—Sub-pixel interpolation is one of the most
computationally intensive parts of High Efficiency Video Coding
(HEVC) video encoder and decoder. High-level synthesis (HLS)
tools are started to be successfully used for FPGA
implementations of digital signal processing algorithms.
Therefore, in this paper, the first FPGA implementation of
HEVC sub-pixel (half-pixel and quarter-pixel) interpolation
algorithm using a HLS tool in the literature is proposed. The
proposed HEVC sub-pixel interpolation hardware is
implemented on Xilinx FPGAs using Xilinx Vivado HLS tool. It,
in the worst case, can process 45 quad full HD (3840x2160) video
frames per second. Using HLS tool significantly reduced the
FPGA development time. Therefore, HLS tools can be used for
FPGA implementation of HEVC video encoder.

Keywords—HEVC, Sub-Pixel Interpolation, HLS, FPGA.

I. INTRODUCTION

Joint collaborative team on video coding (JCT-VC)
recently developed a new video compression standard called
High Efficiency Video Coding (HEVC) [1]-[3]. HEVC
provides 50% better coding efficiency than H.264 video
compression standard. Sub-pixel (half-pixel and quarter-pixel)
interpolation is one of the most computationally intensive
parts of HEVC video encoder and decoder. On average, one
fourth of the HEVC encoder complexity and 50% of the
HEVC decoder complexity are caused by sub-pixel
interpolation [4].

In H.264, a 6-tap FIR filter is used for half-pixel
interpolation and linear interpolation is used for quarter-pixel
interpolation [5]. In HEVC, three different 8-tap FIR filters are
used for both half-pixel and quarter-pixel interpolations [6]. In
H.264, 4x4 and 16x16 block sizes are used. In HEVC,
prediction unit (PU) sizes can be from 4x4 to 64x64.
Therefore, HEVC sub-pixel interpolation is more complex
than H.264 sub-pixel interpolation.

In this paper, the first high-level synthesis (HLS)
implementation of HEVC sub-pixel interpolation algorithm in
the literature is proposed. The proposed HEVC sub-pixel
interpolation hardware is implemented on Xilinx FPGAs using
Xilinx Vivado HLS tool. HLS tools accept their inputs in
different formats [7]. Xilinx Vivado HLS tool takes C or C++
codes as input, and generates Verilog or VHDL codes. The C
codes given as input to Xilinx Vivado HLS tool are developed
based on the HEVC sub-pixel interpolation software

implementation in the HEVC reference software video
encoder (HM) version 15 [8]. Three HEVC sub-pixel
interpolation HLS implementations are done. In the first one
(MM), in the C codes, multiplications with constants are
implemented using multiplication operations. In the second
one (MAS), multiplications with constants are implemented
using addition and shift operations. In the last one (MMCM),
addition and shift operations are implemented using Hcub
multiplierless constant multiplication algorithm [9].

Verilog RTL codes generated by Xilinx Vivado HLS tool
for the three HEVC sub-pixel interpolation HLS
implementations are verified to work in a Xilinx Virtex 6
FPGA. The implementation results show that the proposed
HEVC sub-pixel interpolation FPGA implementation, in the
worst case, can process 45 quad full HD (3840x2160) video
frames per second with acceptable hardware area. Using HLS
tool significantly reduced the FPGA development time.
Therefore, HLS tools can be used for FPGA implementation
of HEVC video encoder.

A few HLS implementations for HEVC video compression
standard are proposed in the literature [10], [11]. A few HLS
implementations for H.264 video compression standard are
proposed in the literature [12]. In Section III, the HEVC sub-
pixel interpolation HLS implementation proposed in this paper
is compared with the handwritten HEVC sub-pixel
interpolation hardware implementations proposed in the
literature [13]-[16].

II. HEVC SUB-PIXEL INTERPOLATION ALGORITHM

Integer pixels (Ax,y), half pixels and quarter pixels in a PU
are shown in Fig. 1. Type A, type B and type C 8-tap FIR
filters used for sub-pixel interpolation are shown in (1), (2),
and (3), respectively. The shift1 value is determined based on
bit depth of the pixel. The half pixels a, b, c are interpolated
from nearest integer pixels in horizontal direction using type
A, type B and type C filters, respectively. The half-pixels d, h,
n are interpolated from nearest integer pixels in vertical
direction using type A, type B and type C filters, respectively.
The quarter pixels e, f, g are interpolated from the nearest a, b,
c half pixels respectively in vertical direction using type A
filter. The quarter pixels i, j, k are interpolated similarly using
type B filter. The quarter pixels p, q, r are interpolated
similarly using type C filter.

2016 11th International Conference on Design & Technology of Integrated Systems in Nanoscale Era
(DTIS)

978-1-5090-0336-5/16/$31.00 ©2016 IEEE

!

Fig. 1. Integer, Half and Quarter Pixels

, = (− , + 4 ∗ , − 10 ∗ , +	58 ∗ , +17 ∗ , − 5 ∗ , +	 ,) ≫ ℎ 1
(1)

, = (− , + 4 ∗ , − 11 ∗ , +	40 ∗ , +40 ∗ , − 11 ∗ , + 	4 ∗ , − ,) ≫ ℎ 1
(2)

, = (− , − 5 ∗ , + 17 ∗ , +	58 ∗ , −10 ∗ , + 4 ∗ , −	 ,) ≫ ℎ 1
(3)

III. HEVC SUB-PIXEL INTERPOLATION HLS

IMPLEMENTATIONS

The proposed HLS implementation of HEVC sub-pixel
interpolation is shown in Fig. 2. The proposed HLS
implementation is synthesized to Verilog RTL using Xilinx
Vivado HLS tool. The C codes given as input to Xilinx
Vivado HLS tool are developed based on the HEVC sub-pixel
interpolation software implementation in the HEVC reference
software video encoder (HM) version 15 [8].

In the proposed HLS implementation, half pixels and
quarter pixels for an 8x8 PU are interpolated using 15x15
integer pixels. Half pixels and quarter pixels for larger PU
sizes can be interpolated by interpolating the half pixels and
quarter pixels for each 8x8 part of a PU separately. In the C
codes, 15 integer pixels are taken as input in each clock cycle.
8 a, 8 b and 8 c half-pixels are interpolated in parallel in each
clock cycle. 15x8 a, 15x8 b, and 15x8 c half pixels are
interpolated in 15 clock cycles, and they are stored into
registers for quarter pixel interpolation. In the same 15 clock
cycles, 15x8 integer pixels are also stored into registers for
interpolating d, h, n half pixels. Then, 8x8 d, 8x8 h, 8x8 n half
pixels are interpolated using 15x8 integer pixels. Finally, all
quarter pixels (e, f, g, i, j, k, p, q, r) are interpolated using 15x8
a, 15x8 b, and 15x8 c half pixels.

Three HEVC sub-pixel interpolation HLS implementations
are done. In the first one (MM), in the C codes, multiplications
with constants are implemented using multiplication
operations. In the second one (MAS), multiplications with
constants are implemented using addition and shift operations.

In the last one (MMCM), addition and shift operations are
implemented using Hcub multiplierless constant multiplication
algorithm [9].

Verilog RTL codes generated by Xilinx Vivado HLS tool
for these three HLS implementations are verified with RTL
simulations. RTL simulation results matched the results of
HEVC sub-pixel interpolation software implementation in the
HEVC reference software video encoder (HM) version 15 [8].
The Verilog RTL codes are synthesized and mapped to a
Xilinx XC6VLX550T FF1760 FPGA with speed grade 2 using
Xilinx ISE 14.7. The FPGA implementations are verified with
post place and route simulations.

We used several optimizations offered by Xilinx Vivado
HLS tool to increase the performance and decrease the area of
the proposed HLS implementations [17]. We tried to use loop
unrolling directive. However, loop unrolling directive did not
work correctly for the proposed HLS implementations. In [18],
it is mentioned that loop unrolling may cause memory access
problems in HLS designs, and current generation of HLS tools
may ignore these problems. As shown in Table I, the
performance of the HLS implementation, which implements
multiplications with constants using multiplication operations,
without loop unrolling is very low. Therefore, we performed
manual loop unrolling in the proposed HLS implementations
to increase their performances.

Allocation (ALC) directive is used to specify the
maximum number of resources that can be used in hardware. It
forces the HLS tool to perform resource sharing. It therefore
decreases the hardware area. In the proposed HLS
implementations, ALC is used for subtraction, addition,
multiplication, and shifting operations. Pipeline (PIPE)
directive performs pipelining to increase the performance. It is
used in the proposed HLS implementations.

Resource (RES) directive is used to specify which resource
will be used to implement a variable such as an array,
arithmetic operation or function argument. In the proposed
HLS implementations, it is used to store input integer pixels
into BRAMs. Array map (AMAP) directive is used to map
multiple small arrays into a single large array. The large array
can be targeted to a single large memory (RAM or FIFO)
resource. It is also used to control how (horizontal or vertical)
data is stored in BRAMs. In the proposed HLS
implementations, it is used to control how data is stored in
BRAMs so that the number of BRAMs used in the hardware is
reduced as much as possible.

Array partition (APAR) directive partitions the large arrays
into multiple smaller arrays or individual registers for parallel
data accesses. In the proposed HLS implementations, it is used
to partition the arrays that store a, b, and c half pixels to
increase quarter pixel interpolation performance. Xilinx
Vivado HLS tool provides a specific library for designing bit-
accurate (BIT) models in C codes. In the proposed HLS
implementations, bit accurate model is used to decrease adder
bit widths and therefore hardware area.

!

!

Fig. 2. HEVC Sub-Pixel Interpolation HLS Implementation

The FPGA implementation results for the first HLS
implementation (MM) are given in Table II. In this HLS
implementation, in the C codes, multiplications with constants
are implemented using multiplication operations. These
multiplication operations are mapped to DSP48 blocks in RTL
synthesis. This decreased the number of LUTs and DFFs used
in the hardware. Allocation (ALC), pipeline (PIPE), resource
(RES) and array map (AMAP) directives are used in this HLS
implementation. In the table, M shows the number of
multipliers used in the ALC directive.

The FPGA implementation results for the second HLS
implementation (MAS) are given in Table III. In this HLS
implementation, multiplications with constants are
implemented using addition and shift operations. This HLS
implementation does not use any DSP48 blocks, but it uses
more LUTs and DFFs than MM. It also has higher
performance than MM. Pipeline (PIPE), resource (RES) and
array map (AMAP) directives are used in this HLS
implementation.

The FPGA implementation results for the last HLS
implementation (MMCM) are given in Table IV. In this HLS
implementation, addition and shift operations are implemented
using Hcub multiplierless constant multiplication (MCM)
algorithm [9]. Common sub-expressions are calculated in
different equations and same integer pixel is multiplied with
different constant coefficients in different equations.
Therefore, in this HLS implementation, common sub-
expressions in different FIR filter equations are calculated
once, and the result is used in all the equations. This HLS
implementation also uses Hcub MCM algorithm in order to
reduce number and size of the adders, and to minimize the
adder tree depth [9]. Hcub algorithm tries to minimize number
of adders, their bit size and adder tree depth in a multiplier
block, which multiplies a single input with multiple constants.
This HLS implementation has the best performance with
acceptable hardware area. Allocation (ALC), pipeline (PIPE),
array partition (APAR) directives and bit-accurate (BIT)

model are used in this HLS implementation. In the table, A
and S show the number of adders and subtractors used in the
ALC directive, respectively.

The best HEVC sub-pixel interpolation HLS
implementation proposed in this paper (MMCM with
ALC(A500_S500)_APAR_PIPE_BIT) is compared with the
handwritten HEVC sub-pixel interpolation hardware
implementations proposed in the literature [13]-[16]. The
comparison results are shown in Table V.

The proposed MMCM HLS implementation is similar to
the handwritten HEVC sub-pixel interpolation hardware
implementation proposed in [13]. In [13], common sub-
expressions in different FIR filter equations are calculated
once, and the result is used in all the equations. Also, addition
and shift operations are implemented using Hcub MCM
algorithm. In [13], the handwritten Verilog RTL codes are
synthesized and mapped to a Xilinx XC6VLX130T FF1156
FPGA with speed grade 3. In this paper, the handwritten
Verilog RTL codes proposed in [13] are synthesized and
mapped to a Xilinx XC6VLX550T FF1760 FPGA with speed
grade 2 for fair comparison with the proposed MMCM HLS
implementation. The proposed MMCM HLS implementation
has higher performance than the handwritten HEVC sub-pixel
interpolation hardware implementation proposed in [13] at the
expense of larger area.

Since the handwritten HEVC sub-pixel interpolation
hardware implementation proposed in [14] is designed only
for motion compensation (MC), it has higher performance and
lower area than the proposed MMCM HLS implementation.
The handwritten HEVC sub-pixel interpolation hardware
implementation proposed in [15] has lower performance and
therefore lower area than the proposed MMCM HLS
implementation. In addition, it requires higher clock frequency
to achieve real time performance. The handwritten HEVC sub-
pixel interpolation hardware implementation proposed in [16]
has both lower performance and larger area than the proposed
MMCM HLS implementation.

!

!

TABLE I. HLS IMPLEMENTATION WITHOUT MANUAL LOOP UNROLLING WITH MULTIPLIERS RESULTS
Optimizations Slice LUT DFF BRAM DSP48 Freq. (MHz) Clock Cycles (8x8 PU) Fps

NOOPT 885 2565 1411 1 15 250 1921 1 3840x2160

TABLE II. HLS IMPLEMENTATION WITH MULTIPLIERS RESULTS
Optimizations Slice LUT DFF BRAM DSP48 Freq. (MHz) Clock Cycles (8x8 PU) Fps

NOOPT 4623 14110 7526 0 113 200 156 10 3840x2160

ALC(M128) 4769 14133 6226 0 135 168 148 9 3840x2160

PIPE 4938 14086 8736 0 113 201 56 28 3840x2160

RES(BRAM) 4723 13883 7395 4 113 201 156 10 3840x2160

ALC(M128)_RES(BRAM)_PIPE 5197 14366 8000 4 147 167 56 23 3840x2160

ALC(M128)_AMAP(4)_RES(BRAM)_PIPE 4299 12401 7964 2 147 167 56 23 3840x2160

ALC(M20)_AMAP(4)_RES(BRAM)_PIPE 4299 13100 8037 2 59 168 56 23 3840x2160

TABLE III. HLS IMPLEMENTATION WITH ADDERS AND SHIFTERS RESULTS
Optimizations Slice LUT DFF BRAM DSP48 Freq. (MHz) Clock Cycles (8x8 PU) Fps

NOOPT 4809 15629 9095 0 0 202 133 12 3840x2160

AMAP(4)_RES(BRAM)_PIPE 4891 15716 9436 2 0 200 55 28 3840x2160

TABLE IV. HLS IMPLEMENTATION WITH MCM RESULTS

Optimizations Slice LUT DFF BRAM DSP48 Freq. (MHz) Clock Cycles (8x8 PU) Fps

NOOPT 4850 15632 6673 2 0 201 195 8 3840x2160

ALC(A500_S500)_APAR_PIPE 5288 14619 10118 0 0 168 29 45 3840x2160

ALC(A500_S500)_APAR_PIPE_BIT 4426 14225 9984 0 0 168 29 45 3840x2160

TABLE V. HEVC SUB-PIXEL INTERPOLATION HARDWARE COMPARISON

[13] [14] [15] [16]

Proposed
(MMCM)

Tech.
 Xilinx
Virtex 6

90 nm 150 nm 90 nm
 Xilinx
Virtex 6

Gate/Slice
Count

1597 32.5 K 30.2 K 224 K 4426

Freq.
(MHz)

200 171 312 333 168

Fps 30 QFHD 60 QFHD 30 QFHD 30 FHD 45 QFHD

Design ME + MC MC ME + MC ME + MC ME + MC

ACKNOWLEDGMENT

This research was supported in part by the Scientific and
Technological Research Council of Turkey (TUBITAK) under
the contract 115E290.

REFERENCES
[1] High Efficiency Video Coding, ITU-T Rec. H.265 and ISO/IEC 23008-2

(HEVC), ITU-T and ISO/IEC, Apr. 2013.
[2] E. Kalali, Y. Adibelli, I. Hamzaoglu, “A High Performance and Low

Energy Intra Prediction Hardware for High Efficiency Video Coding”,
International Conference on Field Programmable Logic and
Applications, Aug. 2012.

[3] E. Kalali, E. Ozcan, O. M. Yalcinkaya, I. Hamzaoglu, “A low energy
HEVC inverse transform hardware,” IEEE Transactions on Consumer
Electronics, vol. 60, no. 4, pp. 754-761, Nov. 2014.

[4] J. Vanne, M. Viitanen, T.D. Hämäläinen, A. Hallapuro, “Comparative
rate-distortion-complexity analysis of HEVC and AVC video codecs”,
IEEE Trans. on Circuits and Systems for Video Technology, vol. 22, no.
12, pp.1885-1898, Dec. 2012.

[5] S. Yalcin, I. Hamzaoglu, “A High Performance Hardware Architecture
for Half-Pixel Accurate H.264 Motion Estimation”, 14th IFIP Int.
Conference on VLSI-SoC, Oct. 2006.

[6] E. Kalali, Y. Adibelli, I. Hamzaoglu, “A Reconfigurable HEVC Sub-
Pixel Interpolation Hardware”, IEEE Int. Conference on Consumer
Electronics - Berlin, Sept. 2013.

[7] W. Meeus, K. V. Beeck, T. Goedeme, J. Meel, D. Stroobandt, “An
overview of today's high-level synthesis tools,” Springer Design
Automation for Embedded Systems, vol. 16, no. 3, pp. 31-51, Sept.
2012.

[8] K. McCann, B. Bross, W.J. Han, I.K. Kim, K. Sugimoto, G. J. Sullivan,
“High Efficiency Video Coding (HEVC) Test Model (HM) 15 Encoder
Description”, JCTVC-Q1002, June 2014.

[9] Y. Voronenko, M. Püschel, "Multiplierless Constant Multiple
Multiplication", ACM Trans. on Algorithms, vol. 3, no. 2, May 2007.

[10] E. Kalali, I. Hamzaoglu, “FPGA Implementations of HEVC Inverse
DCT Using High-Level Synthesis,” Conf. on Design and Architectures
for Signal and Image Processing (DASIP), pp. 1-6, Sept. 2015.

[11] P. Sjovall, J. Virtanen, J. Vanne, T. D. Hamalainen,“High-Level
Synthesis Design Flow for HEVC Intra Encoder on SoC FPGA,”
Euromicro Conf. on Digital System Design, pp. 49-56, Aug. 2015.

[12] S. Kim, H. Kim, T. Chung, J-G. Kim, “Design of H.264 video encoder
with C to RTL design tool,” Int. SoC Design Conference, pp. 171-174,
Nov. 2012.

[13] E. Kalali, I. Hamzaoglu, “A low energy HEVC sub-pixel interpolation
hardware,” IEEE Int. Conference on Image Processing, pp. 1218-1222,
Oct. 2014.

[14] Z. Guo, D. Zhou, S. Goto, “An Optimized MC Interpolation Architecture
for HEVC”, IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, March 2012.

[15] C. M. Diniz, M. Shafique, S. Bampi, J. Henkel, “High-Throughput
Interpolation Hardware Architecture with Coarse-Grained
Reconfigurable Datapaths for HEVC”, IEEE Int. Conference on Image
Processing, Sept. 2013.

[16] G. Pastuszak, M. Trochimiuk, “Architecture Design and Efficiency
Evaluation for the High-Throughput Interpolation in the HEVC
Encoder”, Euromicro Conference on Digital System Design, Sept. 2013.

[17] UG902, “Vivado Design Suite User Guide: High-Level Synthesis,” May
2014.

[18] P. Coussy, A. Morawiec, High-Level Synthesis from Algorithm to
Digital Circuit, Springer, 2008.

!

!

