2,646 research outputs found

    Design of Event-Triggered Fault-Tolerant Control for Stochastic Systems with Time-Delays

    Get PDF
    This paper proposes two novel, event-triggered fault-tolerant control strategies for a class of stochastic systems with state delays. The plant is disturbed by a Gaussian process, actuator faults, and unknown disturbances. First, a special case about fault signals that are coupled to the unknown disturbances is discussed, and then a fault-tolerant strategy is designed based on an event condition on system states. Subsequently, a send-on-delta transmission framework is established to deal with the problem of fault-tolerant control strategy against fault signals separated from the external disturbances. Two criteria are provided to design feedback controllers in order to guarantee that the systems are exponentially mean-square stable, and the corresponding H∞-norm disturbance attenuation levels are achieved. Two theorems were obtained by synthesizing the feedback control gains and the desired event conditions in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are provided to illustrate the effectiveness of the proposed theoretical results

    Analysis, filtering, and control for Takagi-Sugeno fuzzy models in networked systems

    Get PDF
    Copyright © 2015 Sunjie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The fuzzy logic theory has been proven to be effective in dealing with various nonlinear systems and has a great success in industry applications. Among different kinds of models for fuzzy systems, the so-called Takagi-Sugeno (T-S) fuzzy model has been quite popular due to its convenient and simple dynamic structure as well as its capability of approximating any smooth nonlinear function to any specified accuracy within any compact set. In terms of such a model, the performance analysis and the design of controllers and filters play important roles in the research of fuzzy systems. In this paper, we aim to survey some recent advances on the T-S fuzzy control and filtering problems with various network-induced phenomena. The network-induced phenomena under consideration mainly include communication delays, packet dropouts, signal quantization, and randomly occurring uncertainties (ROUs). With such network-induced phenomena, the developments on T-S fuzzy control and filtering issues are reviewed in detail. In addition, some latest results on this topic are highlighted. In the end, conclusions are drawn and some possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 11301118 and 61174136, the Natural Science Foundation of Jiangsu Province of China under Grant BK20130017, the Fundamental Research Funds for the Central Universities of China under Grant CUSF-DH-D-2013061, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Performance analysis with network-enhanced complexities: On fading measurements, event-triggered mechanisms, and cyber attacks

    Get PDF
    Copyright © 2014 Derui Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Nowadays, the real-world systems are usually subject to various complexities such as parameter uncertainties, time-delays, and nonlinear disturbances. For networked systems, especially large-scale systems such as multiagent systems and systems over sensor networks, the complexities are inevitably enhanced in terms of their degrees or intensities because of the usage of the communication networks. Therefore, it would be interesting to (1) examine how this kind of network-enhanced complexities affects the control or filtering performance; and (2) develop some suitable approaches for controller/filter design problems. In this paper, we aim to survey some recent advances on the performance analysis and synthesis with three sorts of fashionable network-enhanced complexities, namely, fading measurements, event-triggered mechanisms, and attack behaviors of adversaries. First, these three kinds of complexities are introduced in detail according to their engineering backgrounds, dynamical characteristic, and modelling techniques. Then, the developments of the performance analysis and synthesis issues for various networked systems are systematically reviewed. Furthermore, some challenges are illustrated by using a thorough literature review and some possible future research directions are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 61203139, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    A virtual actuator approach for the secure control of networked LPV systems under pulse-width modulated DoS attacks

    Get PDF
    In this paper, we formulate and analyze the problem of secure control in the context of networked linear parameter varying (LPV) systems. We consider an energy-constrained, pulse-width modulated (PWM) jammer, which corrupts the control communication channel by performing a denial-of-service (DoS) attack. In particular, the malicious attacker is able to erase the data sent to one or more actuators. In order to achieve secure control, we propose a virtual actuator technique under the assumption that the behavior of the attacker has been identified. The main advantage brought by this technique is that the existing components in the control system can be maintained without need of retuning them, since the virtual actuator will perform a reconfiguration of the plant, hiding the attack from the controller point of view. Using Lyapunov-based results that take into account the possible behavior of the attacker, design conditions for calculating the virtual actuators gains are obtained. A numerical example is used to illustrate the proposed secure control strategy.Peer ReviewedPostprint (author's final draft

    Event-Based H∞ filter design for a class of nonlinear time-varying systems with fading channels and multiplicative noises

    Get PDF
    In this paper, a general event-triggered framework is developed to deal with the finite-horizon H∞ filtering problem for discrete time-varying systems with fading channels, randomly occurring nonlinearities and multiplicative noises. An event indicator variable is constructed and the corresponding event-triggered scheme is proposed. Such a scheme is based on the relative error with respect to the measurement signal in order to determine whether the measurement output should be transmitted to the filter or not. The fading channels are described by modified stochastic Rice fading models. Some uncorrelated random variables are introduced, respectively, to govern the phenomena of state-multiplicative noises, randomly occurring nonlinearities as well as fading measurements. The purpose of the addressed problem is to design a set of time-varying filter such that the influence from the exogenous disturbances onto the filtering errors is attenuated at the given level quantified by a H∞ norm in the mean-square sense. By utilizing stochastic analysis techniques, sufficient conditions are established to ensure that the dynamic system under consideration satisfies the H∞ filtering performance constraint, and then a recursive linear matrix inequality (RLMI) approach is employed to design the desired filter gains. Simulation results demonstrate the effectiveness of the developed filter design scheme

    Event-triggered distributed H∞ state estimation with packet dropouts through sensor networks

    Get PDF
    This study is concerned with the event-triggered distributed H∞ state estimation problem for a class of discrete-time stochastic non-linear systems with packet dropouts in a sensor network. An event-triggered communication mechanism is adopted over the sensor network with hope to reduce the communication burden and the energy consumption, where the measurements on each sensor are transmitted only when a certain triggering condition is violated. Furthermore, a novel distributed state estimator is designed where the available innovations are not only from the individual sensor, but also from its neighbouring ones according to the given topology. The purpose of the problem under consideration is to design a set of distributed state estimators such that the dynamics of estimation errors is exponentially mean-square stable and also the prespecified H∞ disturbance rejection attenuation level is guaranteed. By utilising the property of the Kronecker product and the stochastic analysis approaches, sufficient conditions are established under which the addressed state estimation problem is recast as a convex optimisation one that can be easily solved via available software packages. Finally, a simulation example is utilised to illustrate the usefulness of the proposed design scheme of event-triggered distributed state estimators.This work was supported in part by Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61203139, 61473076, 61374127 and 61422301, the Shanghai Rising-Star Program of China under Grant 13QA1400100, the ShuGuang project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation under Grant 13SG34, the Fundamental Research Funds for the Central Universities, DHU Distinguished Young Professor Program, and the Alexander von Humboldt Foundation of Germany

    Event-triggered robust distributed state estimation for sensor networks with state-dependent noises

    Get PDF
    This paper is concerned with the event-triggered distributed state estimation problem for a class of uncertain stochastic systems with state-dependent noises and randomly occurring uncertainties over sensor networks. An event-triggered communication scheme is proposed in order to determine whether the measurements on each sensor should be transmitted to the estimators or not. The norm-bounded uncertainty enters into the system in a random way. Through available output measurements from not only the individual sensor but also its neighbouring sensors, a sufficient condition is established for the desired distributed estimator to ensure that the estimation error dynamics are exponentially mean-square stable. These conditions are characterized in terms of the feasibility of a set of linear matrix inequalities, and then the explicit expression is given for the distributed estimator gains. Finally, a simulation example is provided to show the effectiveness of the proposed event-triggered distributed state estimation scheme.This work was supported in part by the Deanship of Scientific Research (DSR) at King Abdulaziz University of Saudi Arabia under Grant 16-135-35-HiCi, the National Natural Science Foundation of China under Grants 61374127 and 61329301, the Scientific and Technology Research Foundation of Heilongjiang Education Department of China under Grant 12541061 and 12511014, and the Alexander von Humboldt Foundation of Germany

    Quantitative evaluation of Pandora Temporal Fault Trees via Petri Nets

    Get PDF
    © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. Using classical combinatorial fault trees, analysts are able to assess the effects of combinations of failures on system behaviour but are unable to capture sequence dependent dynamic behaviour. Pandora introduces temporal gates and temporal laws to fault trees to allow sequence-dependent dynamic analysis of events. Pandora can be easily integrated in model-based design and analysis techniques; however, the combinatorial quantification techniques used to solve classical fault trees cannot be applied to temporal fault trees. Temporal fault trees capture state and therefore require a state space solution for quantification of probability. In this paper, we identify Petri Nets as a possible framework for quantifying temporal trees. We describe how Pandora fault trees can be mapped to Petri Nets for dynamic dependability analysis and demonstrate the process on a fault tolerant fuel distribution system model
    corecore