
     

Quantitative evaluation of Pandora Temporal Fault Trees via Petri Nets 
 

Sohag Kabir, Martin Walker, and Yiannis Papadopoulos 

 

Department of Computer Science, University of Hull, Hull, UK 

(e-mail:{ s.kabir@2012., martin.walker@, y.i.papadopoulos@ } hull.ac.uk). 

 

Abstract: Using classical combinatorial fault trees, analysts are able to assess the effects of combinations 

of failures on system behaviour but are unable to capture sequence dependent dynamic behaviour. 

Pandora introduces temporal gates and temporal laws to fault trees to allow sequence-dependent dynamic 

analysis of events. Pandora can be easily integrated in model-based design and analysis techniques; 

however, the combinatorial quantification techniques used to solve classical fault trees cannot be applied 

to temporal fault trees. Temporal fault trees capture state and therefore require a state space solution for 

quantification of probability. In this paper, we identify Petri Nets as a possible framework for quantifying 

temporal trees. We describe how Pandora fault trees can be mapped to Petri Nets for dynamic 

dependability analysis and demonstrate the process on a fault tolerant fuel distribution system model.  

Keywords: Dependability Analysis, Fault Tree Analysis, Stochastic Petri Nets, Temporal Fault Trees. 



1. INTRODUCTION 

Our dependence on increasingly complex safety critical 

systems has made the dependability of such systems a prime 

concern for modern society. System safety and reliability are 

two key aspects of system dependability, and Fault Tree 

Analysis (FTA) is a well-established and widely used 

analysis method for evaluating these two properties. In FTA, 

analysis starts with a top event (system failure) and iteratively 

works backward to determine the root causes of system 

failure. To show logical connections between different faults 

and their causes, fault trees utilise a graphical representation 

based on Boolean logic (Vesely et al., 2002). Qualitative 

analysis is performed by reducing them to minimal cut sets 

(MCS), which are the smallest combinations of basic events 

(i.e., leaf nodes of the tree) that are necessary and sufficient 

to cause the top event. Quantitative analysis can estimate the 

unreliability of the system from probabilistic data about basic 

events, which typically represent component failures.   

In dynamic systems with mode and state changes, accurately 

capturing failure behaviour requires understanding the order 

in which events occur. Dynamic Fault Trees (DFTs) (Dugan, 

Bavuso and Boyd, 1992) and Pandora temporal fault trees 

(TFTs) (Walker, 2009) are two FTA extensions that capture 

dynamic behaviour. DFTs are typically used as a quantitative 

method and are analysed via conversion into Markov chains. 

Pandora introduces temporal gates and provides a set of 

temporal laws to allow both qualitative and quantitative 

analysis by generating minimal cut sequences (MCSQs) from 

TFTs. Similar to the MCSs of classical fault trees; the 

MCSQs of TFTs are the smallest sequences of events that are 

necessary and sufficient to cause the top event. However, the 

techniques used for solving classical FTs are not suitable to 

solve Pandora TFTs. The solution requires generating all 

possible reachable system states and stochastic transitions 

between states. In other words, a conversion to a Continuous 

Time Markov Chain (CTMC) is required to solve TFTs. As 

stochastic Petri Nets (SPNs) are a well-established modelling 

technique and their underlying reachability graphs are 

isomorphic to CTMCs, they have been used for state-space 

solution to DFTs (Codetta-Raiteri, 2005; Zhang, Miao, Fan 

and Wang, 2009). However, no attempts have been made so 

far to use stochastic Petri Nets to solve Pandora TFTs.  

One of the advantages of Pandora is that it can do qualitative 

analysis and create useful insight to system failure in the 

absence of limited or absent quantitative failure data, e.g. in 

the case of new software components. In addition, the 

technique is integrated well in model-based design and 

analysis. It has been shown by Walker and Papadopoulos  

(2009) that Pandora logical expressions can be used to 

describe the local failure behaviour of components and then 

enable synthesis of TFTs from systems models that have 

been annotated with Pandora expressions using popular 

notations, e.g. Matlab Simulink, SysML, EAST-ADL, or 

AADL. Given the increasing importance of model-based 

design and analysis, and the potential use of Pandora in this 

context, we believe that it is both theoretically and practically 

useful to explore possible ways for improved analysis of 

Pandora TFTs. Therefore, in this paper, we show how the 

Petri Nets can also be used to solve Pandora TFTs. 

2. PANDORA TEMPORAL FAULT TREES 

Pandora defines three temporal gates: Priority-AND (PAND), 

Priority-OR (POR), and Simultaneous-AND (SAND) to 

extend classical fault trees. These gates allow analysts to 

represent sequences or simultaneous occurrence of events, 

and thus enable fault trees to capture sequence dependent 

dynamic behaviour as well as combinatorial failure 



 

 

     

 

behaviour. Fault tree symbols for the three gates are shown in 

Fig.1, where (I) is the Priority-AND, (II) is the Priority-OR, 

and (III) is the Simultaneous-AND. 

 

PAND gate is not a new gate and has been used in FTA as far 

back as the 1970s (Fussell, Aber and Rahl, 1976), and also 

used in the Dynamic Fault Trees. However, behaviour of this 

gate was never properly defined for use in qualitative 

analysis, resulting in ambiguous outcome. The symbol ‘<’ is 

used to represent the PAND gate in logical expressions, i.e., 

A < B means (A PAND Y) where A and B are both failure 

events. In Pandora, therefore, the PAND gate is defined as 

being true only if: 

 

1. All input events occur 

2. Input events occur in sequence from left to right 

3. No input events occur simultaneously 

 

 

Fig. 1. Temporal gates: (I) PAND. (II) POR. (III) SAND. 

Like the PAND gate, the POR gate also defines a sequence, 

but it specifies an ordered disjunction rather than an ordered 

conjunction. It is used to indicate that one input event has 

priority and must occur first for the POR to be true, but does 

not require all other input events to occur as well. The POR 

can therefore be used to represent trigger conditions where 

the occurrence of the priority event means that subsequent 

events may have no effect. The symbol ‘|’ is used to represent 

the POR gate in logical expressions, thus A|B means (A POR 

Y). The POR is true only if the following conditions are true: 

 

1. Its left-most (priority) occurs 

2. No other input event occurs before the priority event 

3. No other input event occurs at the same time as the 

priority event 

 
The SAND gate is used to define situations where an 

outcome is only triggered if two or more events occur 

approximately simultaneously. For example, this can happen 

because of a common cause, or because the events have a 

different effect if they occur approximately simultaneously as 

opposed to in a sequence. It is true only if: 

 

1. All input events occur 

2. All the input events occur at the same time 

 

The symbol ‘&’ is used to represent the SAND gate in logical 

expressions. In this paper, we use ‘+’ to represent OR and ‘.’ 

to represent AND gate. In a logical expression the SAND 

gate has the highest priority, then PAND, POR, AND, and 

OR. Hence A+B&C<D|E is equivalent to A+(((B&C)<D)|E). 

 

Pandora extends fault trees with temporal gates and provides 

a set of temporal laws to facilitate qualitative analysis. These 

laws form the basis for qualitative analysis of Pandora’s 

temporal fault trees and they can all be proved with the help 

of temporal truth tables as in (Walker, 2009). Temporal laws 

help to reduce and minimise the failure expressions to obtain 

minimal cut sequences (MCSQs). From the MCSQs, it is 

possible to understand what combinations and sequences of 

events are necessary and sufficient to cause system failure.  

Pandora considers occurrence of failure events as instant (i.e., 

go from ‘false’ to ‘true’ with no delay) and persistent (i.e., 

once occurred, they remain in a ‘true’ state forever). 

 

Although the primary goal of creating Pandora TFTs was to 

facilitate qualitative analysis, efforts have also been made to 

enable quantitative analysis. Methodologies for probabilistic 

evaluation of Boolean gates are available in the Fault Tree 

Handbook (Vesely et al., 2002). Similarly, as the PAND gate 

also features in DFTs, algebraic (Fussell, Aber and Rahl, 

1976; Merle, Roussel and Lesage, 2011), Markov chain based 

(Boudali, Crouzen and Stoelinga, 2007), Bayesian Network 

based (Boudali and Dugan, 2005; Neil et al., 2008; Montani, 

Portinale, Bobbio and Codetta-Raiteri, 2008), and Petri Net 

based (Codetta-Raiteri, 2005) methods are all available for 

quantifying the PAND gate in DFTs. Recently, analytical 

approaches have been introduced by Edifor, Walker and 

Gordon (2012, 2013) and a Bayesian Network based 

approach has been proposed by Kabir, Walker and 

Papadopoulos (2014) to quantify Pandora temporal fault 

trees. However, this latter approach models the failure 

behaviour of the system in a discrete-time domain, and 

therefore requires settling the granularity of time 

discretisation as part of the model transformation.  

 

3. PRELIMINARIES ON PETRI NETS 

Petri Nets are a formal graphical and mathematical modelling 

tool widely used with distributed and concurrent systems. 

Classical Petri Nets consist of a finite set of places, a finite 

set of transitions, and a finite set of directed arcs (see Fig. 2). 

 

Fig. 2. A simple Petri Net 

Places are graphically represented by circles and may contain 

tokens, while transitions are graphically represented by 

rectangles and are set to fire when a certain pre-specified 

number of tokens are available in the places connected to the 

transitions. Directed arcs connect places to transitions and 

vice versa. Traditional Petri Nets allow determination of the 

qualitative properties of systems; if they are extended with 

temporal data then quantitative and time-dependent analysis 

can also be performed. Stochastic Petri Nets (SPNs) (Molloy, 



 

 

     

 

1982) are an extension of classical Petri Nets where all 

transition delays are exponentially distributed. In SPNs, 

immediate transitions are difficult to model. Generalised 

Stochastic Petri Nets (GSPNs) (Marsan et al., 1996) solve 

this by allowing both immediate and timed transitions. Timed 

transitions fire after a random period of time (defined as 

exponential distribution of firing time) and immediate 

transitions fire as soon as they are enabled. Immediate 

transitions have priority over timed transitions, i.e., if a timed 

and an immediate transition are enabled at the same time, and 

if any conflict exists between them, then the immediate 

transition fires first. In this paper, timed transitions are 

represented as white rectangles and immediate transitions are 

represented as black rectangles. A special type of arc known 

as an inhibitor arc that ends with a small circle instead of an 

arrowhead is used to connect a place to a transition in order 

to disable the transition if the place is not empty. This allows 

checking the non-occurrence of events. 

Petri Nets can be used to model both nominal and failure 

behaviour of systems. In some cases, Petri Nets are used to 

model functional behaviour and then another safety analysis 

method e.g., FTA is used to analyse failure behaviour of the 

systems based on the non-functional behaviour identified 

from the Petri Nets. In order to increase the modelling and 

analytical capability of combinatorial approaches to 

dependability analysis, Bobbio, et al (1999) and Helmer et al. 

(2007) have proposed ways of translating fault trees into PNs. 

Codetta-Raiteri (2005) and Zhang et al (2009) have 

introduced ways of mapping DFTs to PNs. 

 

4. BEHAVIOURAL SPECIFICATION OF TFT GATES 

WITH PETRI NETS   

This section defines a method for translating Pandora 

temporal fault trees into generalised stochastic Petri Nets. In 

Pandora TFT, events are considered as non-repairable, i.e., 

once a component fails it stays in the failure state forever, 

and gates propagate faults instantly. In the proposed 

mapping, each TFT node (basic, intermediate, and top events) 

is mapped to a sub-net where there is a place indicating the 

status of the node. We use places to represent the state of the 

system, timed transitions to represent random faults and 

immediate transitions to represent failure propagation. Timed 

transitions are characterised by the failure rate of basic events 

and here we have used exponential distribution of failure 

rates. The mapping of each TFT gate to GSPN should be 

correct in that there is a place in the sub-net representing the 

outcome of the gate and if all the conditions are fulfilled for 

the transition representing a gate to fire then the place gets a 

token. 

4.1  Basic Events 

The mapping of a basic event to a Petri Net is shown in Fig.3. 

As all components are assumed to be fully functional at time 

0, the place representing the working state has a token. Every 

component has a failure rate, and the occurrence of an event 

(component failure) is represented by the timed transition 

named Fail. Once this transition fires, the event occurs and a 

token is consumed from the place Working and a token is 

deposited to the place Failed which represents a failure state 

of a component. After that the failure is propagated instantly 

through the immediate transition named Propagate. The 

outgoing arrow from transition Propagate back to place 

Failed serves to maintain persistency of events, i.e., maintain 

the permanent failure state of the event irrespective of any 

further propagation. To ensure that the error is propagated 

exactly once in a single path, the inhibitor arc from place 

Propagated to transition Propagate is used.  

 

Fig. 3. Mapping of a basic event to a Petri Net 

4.2  Temporal Fault Tree Gates 

Mapping of Boolean AND and OR gates to a Petri Net is 

done based on the work of  Bobbio et al. (1999) and shown in 

Fig.4 and 5 respectively. 

 

 

Fig. 4. Mapping of a two input AND gate to a Petri Net 

 

Fig. 5. Mapping of a two input OR gate to a Petri Net 

All the places corresponding to the input events (X_Failed, 

Y_Failed) of the AND gate are connected to a single 

immediate transition with bidirectional arrows. The transition 

will fire when all the input places have tokens (i.e., all input 

events occur) and on firing it deposits a token to the place 

representing the outcome of the gate (AND_Propagated). The 

OR gate is translated to PN by creating a transition for each 

place corresponding to input events of the gate. When one of 

the input places gets a token, one of the transitions will fire 

and deposit a token to the place corresponding to the outcome 

of the OR gate (OR_Propagated). In both the cases (AND 

and OR) no token is consumed from the input places because 

an event may be the input of several gates (hence the bi-

directional arrows). If there are more inputs either to the 

AND or the OR gate then we just need to include them 

following the same fashion shown in Fig. 4 and 5.  



 

 

     

 

Boolean gates are stateless in a sense that they do not need to 

remember the order of occurrence of the events. However, 

temporal gates must remember the order of occurrence of 

input events. The transformation of a two input PAND gate is 

shown in Fig. 6. If there is a token in X_Failed and no token 

in Y_Failed then the transition Propagate_X will fire and 

deposit a token to X_NOT_Y , i.e., event X has happened but 

Y has not happened yet. Afterwards, if Y_Failed gets a token 

due to the occurrence of event Y then this in conjunction with 

X_NOT_Y will enable the transition named PAND to fire, and 

thus deposit a token to the place corresponding to the 

outcome of the PAND gate (PAND_Propagated). A PAND 

gate with more input can be mapped to a Petri Net by 

following this technique whilst maintaining the strict 

sequencing of events. 

 

Fig.7 shows the mapping of a two input POR gate to a Petri 

Net. There is a priority event in the POR gate and the logic of 

the POR gate dictates that  to make the POR output true only 

the priority event is required to occur, or if other events also 

occur then they should occur after the priority event. In the 

POR gate of Fig.7, event X_failed has priority over event 

Y_Failed. The place POR_Propagated represents the 

scenario when the priority input event occurs first and if any 

other input occur then they occur after the priority event. In 

case of more than two inputs we have to make sure that either 

none of the non-priority input occurs or disjunction of all the 

non-priority events occurs after the priority event to make the 

POR outcome true. 

 

 

Fig. 6. Mapping of a two input PAND gate to a Petri Net 

 

 

Fig. 7. Mapping of a two input POR gate to a Petri Net 

As we use the exponential firing rates (failure rates) for the 

timed transitions, two transitions firing at the same time is 

zero. For this reason, if we transform the SAND gate 

containing two or more basic events into a Petri Net then 

during the whole mission time we will not get any token in 

the place representing the SAND output, i.e., probability of 

the SAND outcome is always 0. For this reason, during 

quantitative analysis using exponential failure rates we can 

ignore any MCSQ that contains a SAND gate and no need to 

transform a SAND gate to PN. The logical correctness of all 

the mappings of TFT gates to Petri Nets was verified by 

testing this scheme in the CPN tool (Jensen, Kristensen and 

Wells, 2007).   

5.  CASE STUDY AND EVALUATION 

We have applied the proposed approach to a case study of a 

simplified fault tolerant fuel distribution system of a ship, 

originally used in (Edifor, Walker and Gordon, 2012), 

reworked and shown in Fig. 9. In the functional mode of the 

system, there are two primary fuel flows: Tank 1 provides 

fuel to Engine 1 through Pump 1 (P1), and Tank 2 provides 

fuel to Engine 2 through Pump 2 (P2). Flowmeter 1 (F1) and 

Flowmeter 2 (F2) observe the rate of fuel flow to Engine 1 

and Engine 2 respectively and provide observed information 

to the controller. On detecting discrepancy in the fuel flow to 

either engine, the Controller introduces dynamic behaviour to 

this system to handle the situation by activating the standby 

Pump 3 (P3), redirecting fuel flow accordingly by opening 

some of the valves from V1-V4. 

 

For example, if inadequate fuel flow to Engine 1 is detected, 

then the Controller can open Valve 1 and 3 (V1 and V3) and 

activate Pump 3 (replacing Pump 1), and thus facilitate fuel 

flows to Engine 1 through Pump 3 instead of Pump 1. In 

contrast, if insufficient fuel flow to Engine 2 is detected then 

Pump 3 will be activated and Valve 2 and 4 will be opened 

instead of Valve 1 and 3. Hence, Pump 3 can replace either 

Pump 1 or Pump 2, but not both. A failure of Pump 1 and 

Pump 2 will result in no fuel flow to at least one engine; e.g., 

if Pump 2 fails and Pump 3 replaces it, then Pump 3 will be 

unavailable for replacing Pump 1 if the latter fails. This 

results in degraded propulsion functionality for the ship and 

with one engine working only the speed and manoeuvrability 

of the ship will be reduced. 

 

Pandora temporal gates can be used to capture the dynamic 

behaviour of the fuel distribution system and correctly 

capture the sequence of events together with the 

combinations of the events that can cause system failure. For 

simplicity, the internal failure of the engines themselves is 

left out of the scope of the analysis. The minimal cut 

sequences for the failure behaviour of Engine 1 of the fault 

tolerant fuel distribution system was obtained via model-

based synthesis from Pandora descriptions of local failure 

logic of components, and the minimal cut sequences are: 

 
  E1 = (P1|P2).P3 + (P1|P2).V1 +(P1|P2).V3  

    + (S1<P1)|P2 + (S1&P1)|P2 + P1&P2 

    + (CF<P1)|P2 + (CF&P1)|P2 + P2<P1 

  

 

Fig. 8. Fault Tolerant fuel Distribution System 

 



 

 

     

 

The basic events in the MCSQs are: 

 

1. P1/P2/P3 =  Failure of Pump 1/2/3 

2. V1/V3  =  Failure of Valve 1/3 

3. S1  =  Failure of Flowmeter 1 

4. CF  =  Failure of Controller 

 

As failure of Engine 1 and Engine 2 are caused by the same 

events in the opposite sequence, the analysis of failure 

behavior of Engine 2 is omitted for brevity. In the continuous 

time domain, the probability of two exponentially distributed 

independent events occurring exactly at the same time is 

effectively 0, therefore probability of the MCSQs containing 

SAND gate (S1&P1|P2, CF&P1|P2, and P1&P2) are 

considered as 0, and thus the equivalent Petri Net models for 

those MCSQs are not created. Note that this assumption may 

not always be true, e.g., in cases where a sizable mass of 

probability may exist for simultaneity. The equivalent Petri 

Net model for all other MCSQ are created following the 

procedure described in Section 4 and the Petri Net model for 

the failure behaviour of Engine 1 is obtained by combining 

the Petri Net model of all MCSQ, and shown in Fig. 9. In this 

figure, timed transitions (white rectangles) are characterised 

by exponential firing rates based on the failure rate of the 

components they are connected with. All the components are 

thought to have a constant failure rate per hour with 

probability of occurrence following an exponential 

distribution and the values are shown in Table 1. 

 

The system unreliability was calculated for mission times 

ranging from 2000 hours to 20000 hours using the ORIS tool  

(Horváth et al, 2012). The system unreliability for different 

mission times is shown in Table 2. For comparison, 

considering mission time as 10000 hours, the Bayesian 

Network based technique (Kabir, Walker and Papadopoulos, 

2014) for quantifying the TFT yields the unreliability of the 

system as 0.1159 and 0.1187 with 4 and 5 time slots 

respectively. For mission time as 10000 hours, the 

unreliability value obtained by the Petri Net based technique 

proposed in this paper is 0.1170 and it is quite close to the 

above mentioned values. 

 

Table 1. Failure rates of components of fault tolerant fuel 

distribution system 

Component Failure rate/hour (λ) 

Valve 1 1.0E-5 

Valve 3 6.0E-6 

Pump1 & Pump2 & Pump3 3.2E-5 

Flowmeter 2.5E-6 

Controller 5.0E-7 

 

Table 2. Unreliability of fuel distribution system 

Mission Time (Hours) Unreliability 

2000 0.007 

4000 0.024 

6000 0.050 

8000 0.081 

10000 0.117 

12000 0.155 

14000 0.195 

16000 0.235 

18000 0.275 

20000 0.315 

 

 

 
 

Fig. 9. Petri Net model of the failure behaviour of the fuel distribution system



 

 

     

 

6. CONCLUSION 

In this paper, we have described how Pandora TFTs can be 

used to perform dynamic dependability analysis. Pandora is 

easily integrated in popular model-based design and analysis 

techniques, but classical combinatorial FTA approaches 

cannot be used for the quantitative analysis of Pandora. In 

this paper we show how Petri Nets provide a state space 

solution to Pandora TFTs and presented a method for 

transforming TFTs to Petri Nets for the purpose of dynamic 

dependability analysis. After creating a Petri Net for an 

example fuel system, the system unreliability was calculated 

for different mission times. One difficulty we foresee is that 

state space analysis could be computationally expensive since 

the number of states increases exponentially with the number 

of components of the system. Therefore, instead of analysing 

the whole TFT using state-based techniques, in the future we 

plan to use modularisation techniques that will enable us to 

use combinatorial solutions for modules with Boolean gates 

and state space solutions for modules with temporal gates.   

 

REFERENCES 

Bobbio, A., Franceschinis, G., Gaeta, R. and Portinale, L. 

(1999). Exploiting Petri Nets to Support Fault Tree Based 

Dependability Analysis. In: 8th International Workshops on 

Petri Nets and Performance Models. Zaragoza: IEEE, 

pp.146–155. 

Boudali, H., Crouzen, P. and Stoelinga, M. (2007). Dynamic 

Fault Tree analysis using Input / Output Interactive Markov 

Chains. In: Proceedings of the 37th Annual IEEE/IFIP 

International Conference on Dependable Systems and 

Networks. Washington DC: IEEE Computer Society, pp.708–

717. 

Boudali, H. and Dugan, J.B. (2005). A new bayesian network 

approach to solve dynamic fault trees. In: Proceedings of 

Annual Reliability and Maintainability Symposium. IEEE, 

pp.451–456. 

Codetta-Raiteri, D. (2005). The Conversion of Dynamic Fault 

Trees to Stochastic Petri Nets, as a case of Graph 

Transformation. Electronic Notes in Theoretical Computer 

Science, 127(2), pp.45–60. 

Dugan, J.B., Bavuso, S.J. and Boyd, M.A. (1992). Dynamic 

fault-tree models for fault-tolerant computer systems. IEEE 

Transactions on Reliability, 41(3), pp.363–377. 

Edifor, E., Walker, M. and Gordon, N. (2012). Quantification 

of Priority-OR Gates in Temporal Fault Trees. In Computer 

Safety, Reliability, and Security SE - 9, Lecture Notes in 

Computer Science. Springer Berlin Heidelberg, pp.99–110. 

Edifor, E., Walker, M. and Gordon, N. (2013). Quantification 

of Simultaneous-AND Gates in Temporal Fault Trees. In: 

New Results in Dependability and Computer Systems SE - 13, 

Advances in Intelligent Systems and Computing. Springer 

International Publishing, pp.141–151. 

Fussell, J.B., Aber, E.F. and Rahl, R.G. (1976). On the 

Quantitative Analysis of Priority-AND Failure Logic. IEEE 

Transactions on Reliability, R-25(5), pp.324–326. 

Helmer, G., Wong, J., Slagell, M., Honavar, V., Miller, L., 

Wang, Y., Wang, X. and Stakhanova, N. (2007). Software 

fault tree and coloured Petri net – based specification , design 

and implementation of agent-based intrusion detection 

systems. International Journal of Information and Computer 

Security, 1(1), pp.109–142. 

Horváth, A., Paolieri, M., Ridi, L. and Vicario, E. (2012). 

Transient analysis of non-Markovian models using stochastic 

state classes. Performance Evaluation, 69(7-8), pp.315–335.  

Jensen, K., Kristensen, L.M. and Wells, L. (2007). Coloured 

Petri Nets and CPN Tools for modelling and validation of 

concurrent systems. International Journal on Software Tools 

for Technology Transfer, 9(3-4), pp.213–254.  

Kabir, S., Walker, M. and Papadopoulos, Y. (2014). 

Reliability Analysis of Dynamic Systems by Translating 

Temporal Fault Trees into Bayesian Networks. In: Model-

Based Safety and Assessment, Lecture Notes in Computer 

Science. Cham: Springer International Publishing, pp.96–

109.  

Marsan, M.A., Balbo, G., Conte, G., Donatelli, S. and 

Franceschinis, G. (1996). Modeling With Generalized 

Stochastic Petri Nets. West Sussex: Wiley.  

Merle, G., Roussel, J.-M. and Lesage, J.-J. (2011). Algebraic 

determination of the structure function of Dynamic Fault 

Trees. Reliability Engineering & System Safety, 96(2), 

pp.267–277. 

Molloy, M.K. (1982). Performance analysis using stochastic 

Petri nets. IEEE Transactions on Computers, c-31(9), 

pp.913–917. 

Montani, S., Portinale, L., Bobbio, A. and Codetta-Raiteri, D. 

(2008). Radyban: A tool for reliability analysis of dynamic 

fault trees through conversion into dynamic Bayesian 

networks. Reliability Engineering & System Safety, 93(7), 

pp.922–932. 

Neil, M., Tailor, M., Marquez, D., Fenton, N. and Hearty, P. 

(2008). Modelling dependable systems using hybrid Bayesian 

networks. Reliability Engineering & System Safety, 93(7), 

pp.933–939. 

Vesely, W., Stamatelatos, M., Dugan, J., Fragola, J., 

Minarick, J. and Railsback, J. (2002). Fault tree handbook 

with aerospace applications. NASA office of safety and 

mission assurance, Washington DC. 

Walker, M. (2009). Pandora: A Logic for the Qualitative 

Analysis of Temporal Fault Trees. PhD Thesis, University of 

Hull. 

Walker, M. and Papadopoulos, Y. (2009). Qualitative 

temporal analysis: Towards a full implementation of the Fault 

Tree Handbook. Control Engineering Practice, 17(10), 

pp.1115–1125. 

Zhang, X., Miao, Q., Fan, X. and Wang, D. (2009). Dynamic 

fault tree analysis based on Petri nets. In: 8th International 

Conference on Reliability, Maintainability and 

Safety(ICRMS). Chengdu: IEEE, pp.138–142.  

 

456388
Sticky Note
Marked set by 456388




